Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Diamonds shine in quantum networks
by Staff Writers
Calgary, Canada (SPX) Apr 27, 2011


File image.

When it comes to dreaming about diamonds, energy efficiency and powerful information processing aren't normally the thoughts that spring to mind. Unless, of course, you are a quantum physicist looking to create the most secure and powerful networks around.

Researchers at the University of Calgary and Hewlett Packard Labs in Palo Alto, California, have come up with a way to use impurities in diamonds as a method of creating a node in a quantum network. In addition to making powerful and secure networks, this discovery may also help sensitive measurements of magnetic fields and create new powerful platforms useful for applications in biology.

"Impurities in diamonds have recently been used to store information encoded onto their quantum state, which can be controlled and read out using light. But coming up with robust way to create connections needed to pass on signals between these impurities is difficult," says Dr. Paul Barclay, who recently moved to Calgary to start labs at the University of Calgary in the Institute for Quantum Information Science and at the National Institute for Nanotechnology in Edmonton.

"We have taken an important step towards achieving this," adds Barclay.

Barclay and colleagues Dr. Andrei Faraon, Dr. Kai-Mei Fu, Dr. Charles Santori and Dr. Ray Beausoleil from Hewlett Packard have published a paper on their research in the journal Nature Photonics.

Impurities in diamonds are responsible for slightly altering the material's colour, typically adding a slight red or yellow tint.

The "NV center" impurity, which consists of a nitrogen atom and a vacancy in otherwise perfect diamond carbon lattice, has quantum properties that researchers are learning to exploit for useful applications.

In principle, individual particles of light, photons, can be used to transfer this quantum information between impurities, each of which could be a node in a quantum network used for energy efficient and powerful information processing.

In practice, this is challenging to demonstrate because of the small size of the impurities (a few nanometers) and the experimental complexity that comes along with studying and controlling several nanoscale quantum systems at once.

Researchers at Hewlett Packard Labs and Barclay, who worked on this research at HP and is now a professor in the Department on Physics and Astronomy at the University of Calgary, have created photonic "microring resonators" on diamond chips.

These microrings are designed to efficiently channel light between diamond impurities, and an on-chip photonic circuit connected to quantum impurities at other locations on the chip.

In future work, this microring will be connected to other components on the diamond chip, and light will be routed between impurities.

"This work demonstrates the important connection between fundamental physics, blue sky applications, and near-term problem solving. It involves many of the same concepts being pushed by companies such as HP, IBM, and Intel who are beginning to integrate photonics with computer hardware to increase performance and reduce the major problem of heat generation," says Barclay.

The article, Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity, is written Andrei Faraon, Kai-Mei Fu, Charles Santori and Ray Beausoleil (Hewlett Packard) and Paul Barclay (Hewlett Packard and University of Calgary), and is published in the recent on-line edition of Nature Photonics.

.


Related Links
University of Calgary
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
New Fracture Resistance Mechanisms Provided By Graphene
Tucson AZ (SPX) Apr 18, 2011
A team of researchers from the University of Arizona and Rensselaer Polytechnic Institute have increased the toughness of ceramic composites by using graphene reinforcements that enable new fracture resistance mechanisms in the ceramic. The research, lead by Assistant Professor Erica L. Corral from the Materials Science and Engineering Department at the University of Arizona in Tucson, and ... read more


CARBON WORLDS
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

CARBON WORLDS
NASA Orbiter Reveals Big Changes in Mars' Atmosphere

Dry ice find hints Mars was a wetter place: study

A Tale Of Two Deserts

Mars Rover's 'Gagarin' Moment Applauded Exploration

CARBON WORLDS
The Big Picture Wins Big

T-38s Soar as Spaceflight Trainers

Tugboats in Space

SpaceX Wins NASA Contract To Complete Development Of Successor To Space Shuttle

CARBON WORLDS
Countdown begins for Chineses space station program

Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

CARBON WORLDS
See You On The ISS Said The Spider To The Fly

Russia launches cargo vessel for space station

Russia's Progress M-09M spacecraft to be sunk in Pacific

Russia prepares to launch space freighter to ISS

CARBON WORLDS
GSAT-8 put through its paces

Ariane Ariane 5 enjoys second successful launch for 2011

Ariane rocket launches two telecoms satellites

SpaceX aims to put man on Mars in 10-20 years

CARBON WORLDS
Tuning Into ExoPlanet Radio

The Shocking Environment Of Hot Jupiters

Radio signals could 'tag' distant planets

Titan-Like Exoplanets

CARBON WORLDS
Lake life around Chernobyl said thriving

Researchers working to advance predictability research initiatives

Researchers Discover Optical Secrets of Metallic Beetles

New material creates invisibility




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement