. 24/7 Space News .
Deep Space Radar Cuts Mercury to Core As Messenger Lines Up For Venus Flyby
Diagram showing the interior structure of Mercury. The metallic core extends from the center to a large fraction of the planetary radius. Radar observations show that the core or outer core is molten. Image credit: Nicolle Rager Fuller, National Science Foundation
Diagram showing the interior structure of Mercury. The metallic core extends from the center to a large fraction of the planetary radius. Radar observations show that the core or outer core is molten. Image credit: Nicolle Rager Fuller, National Science Foundation
by Staff Writers
Pasadena CA (SPX) May 04, 2007
Researchers working with high-precision planetary radars, including the Goldstone Solar System Radar of NASA's Jet Propulsion Laboratory, Pasadena, Calif., have discovered strong evidence that the planet Mercury has a molten core. The finding explains a more than three-decade old planetary mystery that began with the flight of JPL's Mariner 10 spacecraft. The research appears in this week's issue of the journal Science.

Launched in Nov. 1973, Mariner 10 made three close approaches to Mercury in 1974 and 75. Among its discoveries was that Mercury had its own weak magnetic field - about one percent as strong as that found on Earth.

"Scientists had not expected to find a magnetic field at Mercury," said Professor Jean-Luc Margot of Cornell University, Ithaca, N.Y., leader of the research team. "Planetary magnetic fields are associated with molten cores, and the prevailing theory was the planet was too small to have a molten core."

Scientists theorized that Mercury consisted of a silicate mantle surrounding a solid iron core. This iron was considered solid - or so the theory went - because small planets like Mercury cool off rapidly after their formation. If Mercury followed this pattern, then its core should have frozen long ago.

Many believed the Mercury mystery would only be resolved if and when a spacecraft landed on its aggressively toasty surface. Then, in 2002, scientists began pointing some of the most powerful antennas on our planet at Mercury in an attempt to find the answer.

"On 18 separate occasions over the past five years, we used JPL's Goldstone 70-meter [230-foot] antenna to fire a strong radar signal at Mercury," said Planetary Radar Group Supervisor Martin Slade of JPL, a co-author of the paper. "Each time, the radar echoes from the planet were received about 10 minutes later at Goldstone and another antenna in West Virginia."

Measuring the echo of particular surface patterns from the surface of Mercury and how long they took to reproduce at both Goldstone and the Robert C. Byrd Green Bank Telescope in West Virginia allowed scientists to calculate Mercury's spin rate to an accuracy of one-thousandth of a percent. The effect was also verified with three more independent radar observations of Mercury transmitted from the National Science Foundation's Arecibo Observatory in Puerto Rico.

With these data the science team was able to detect tiny twists in Mercury's spin as it orbited the sun. These small variations were double what would be expected for a completely solid body. This finding ruled out a solid core, so the only logical explanation remaining was that the core - or at the very least the outer core - is molten and not forced to rotate along with its shell.

Maintaining a molten core over billions of years requires that it also contain a lighter element, such as sulfur, to lower the melting temperature of the core material. The presence of sulfur supports the idea that radial mixing, or the combining of elements both close to the sun and farther away, was involved in Mercury's formation process.

"The chemical composition of Mercury's core can provide important clues about the processes involved in planet formation," said Margot. "It is fundamental to our understanding of how habitable worlds -- planets like our own -- form and evolve."

Mercury still has its share of mysteries. Some may be solved with the NASA spacecraft Messenger, launched in 2004 and expected to make its first Mercury flyby in 2008. The spacecraft will then begin orbiting the planet in 2011. "It is our hope that Messenger will address the remaining questions that we cannot address from the ground," said Margot.

The study's other co-authors include Stan Peale of the University of Santa Barbara in California; Raymond Jurgens, a JPL engineer, and Igor Holin of the Space Research Institute in Moscow, Russia.

The Goldstone antenna is part of NASA's Deep Space Network Goldstone station in Southern California's Mojave Desert. Goldstone's 70-meter diameter antenna is capable of tracking a spacecraft traveling more than 16 billion kilometers (10 billion miles) from Earth. The surface of the 70-meter reflector must remain accurate within a fraction of the signal wavelength, meaning that the precision across the 3,850-square-meter (41,400-square-foot) surface is maintained within one centimeter (0.4 inch).

related report
Messenger Lines Up For Second Pass At Venus
The Messenger trajectory correction maneuver (TCM-15) completed on April 25 lasted 140 seconds and adjusted the spacecraft's velocity by 0.568 meters per second (1.86 feet per second). One more course correction will be performed before the probe's second Venus flyby on June 5 to ensure precise targeting of the gravity assist.

The maneuver started at 1:30 p.m. EDT. Mission controllers at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., verified the start of TCM-15 about 10 minutes later, when the first signals indicating thruster activity reached NASA's Deep Space Network tracking station outside Madrid, Spain.

Although this maneuver was designed to adjust Messenger's velocity by 0.767 meters per second (2.52 feet per second), mission controllers estimated that about 26% less than the intended velocity change was achieved. There was almost no error in the direction for the velocity change. "The result is that the current trajectory aim point is about 200 kilometers, or 124.3 miles, higher than the ideal target point for the flyby," explains APL's Eric Finnegan, the Messenger mission systems engineer.

According to Finnegan, the spacecraft orientation began to jitter slightly shortly into the maneuver. The spacecraft responded properly by pulsing other thrusters to maintain accurate pointing through the TCM, but this pulsing reduced the efficiency of the maneuver.

"The spacecraft compensated properly for the attitude oscillation, but because of the additional thrusting activity, the system would have needed more time to produce the commanded velocity adjustment," he says. "As a safety precaution in all Messenger maneuvers, the team determines the maximum expected maneuver time and instructs the spacecraft to shut the maneuver down if that time is exceeded. That's what happened here, so the maneuver was stopped before it reached 100% of the planned velocity change."

The flight team is analyzing the data from the attitude control system and tracking data to identify what caused the jitter so they can design future maneuvers to avoid it. Although TCM-15 resulted in a shortfall, it was sufficiently successful that a contingency maneuver, held in reserve for May 5, is not needed. The team can accommodate all adjustments in TCM-16, scheduled for May 25, to direct the spacecraft to the intended aim point 337 kilometers (209 miles) above the surface of Venus.

related report
Messenger Co-Investigator Named To National Academy Of Sciences
Messenger Co-Investigator Mario Acuna, a senior astrophysicist and project scientist with the International Solar Terrestrial Physics Program at NASA Goddard Space Flight Center, was among the 72 new members appointed to the National Academy of Sciences. The election was held May 1 during the business session of the 144th annual meeting of the Academy. Those elected bring the total number of active members to 2,025.

Acuna is an expert in planetary magnetic fields and has been involved in numerous space missions. He is a member of Messenger's Atmosphere and Magnetosphere Group and will help analyze data from the probe's Magnetometer. As a member of the Academy, Acuna he will help advise the federal government on science and technology issues. Additional information about the Academy and its members is available online

Related Links
Trajectory Correction Maneuvers
National Academy of Sciences
News About Space Exploration Programs
News Flash at Mercury
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express







The contents herein, unless otherwise known to be public domain, are Copyright 1995-2005 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by SpaceDaily on any web page published or hosted by SpaceDaily. Privacy statement