Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




EARLY EARTH
Deep Earth heat surprise
by Staff Writers
Washington DC (SPX) Aug 15, 2013


The atoms of the major mantle materials are solid solutions and are in a disordered arrangement, which affects the way they conduct heat. Until now, the effect of this disorder on the way heat was conducted could only be estimated with experiments at low pressures. The pressure dependence on thermal conductivity has not been addressed in disordered materials before.

The key to understanding Earth's evolution is to look at how heat is conducted in the deep lower mantle-a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface. Researchers at the Carnegie Institution, with colleagues at the University of Illinois, have for the first time been able to experimentally simulate the pressure conditions in this region to measure thermal conductivity using a new measurement technique developed by the collaborators and implemented by the Carnegie team on the mantle material magnesium oxide (MgO).

They found that heat transfer is lower than other predictions, with total heat flow across the Earth of about 10.4 terawatts, which is about 60 % of the power used today by civilization. They also found that conductivity has less dependence on pressure conditions than predicted. The research is published in the August 9, online Scientific Reports.

Lead author of the study Douglas Dalton explains: "The lower mantle sits on top of the core where pressures range from 230,000 to 1.3 million times the pressure at sea level. Temperatures are like an inferno-from about 2,800F to 6,700 F. The major constituents are oxides of magnesium, silicon and calcium. Heat transfer occurs at a higher rate across materials of high thermal conductivity than across materials of low thermal conductivity, thus these low thermal conductivity oxides are insulating."

The atoms of the major mantle materials are solid solutions and are in a disordered arrangement, which affects the way they conduct heat. Until now, the effect of this disorder on the way heat was conducted could only be estimated with experiments at low pressures. The pressure dependence on thermal conductivity has not been addressed in disordered materials before.

"We squeezed the samples between two diamond tips in an anvil cell and measured the thermal conductivity of the samples, debuting a technique called time-domain thermoreflectance," remarked co-author Alexander Goncharov.

"We went up to 600,000 times atmospheric pressure at room temperature. This technique allows us to measure the thermal properties of the material from the change in the reflectance of the material's surface, thus avoiding the need of contacting the material of interest as required by conventional techniques. We then compared the results to theoretical models."

The scientists also showed that there is less dependence of thermal conductivity on pressure than had been predicted. Calculations showed that at the core-mantle boundary there is an estimated total heat flow of 10.4 terawatts across the Earth.

"The results provide important bounds on the degree to which heat is transferred by convection as opposed to conduction in the lower mantle," said Russell J. Hemley, director of Carnegie's Geophysical Laboratory.

"The next step will be to examine effects of different mineral components on the thermal conductivity and to better understand the atomic scale basis of convective motion of these materials within the broader context of mantle dynamics."

"The results suggest that this technique could really advance other high pressure and temperature studies of the deep Earth and provide a better understanding of how Earth is evolving and how materials act under the intense conditions," concluded Goncharov.

This research was supported by the National Science Foundation, The Carnegie DOE Alliance Center (CDAC), and Energy Frontier Research in Extreme Environments Center ( EFree).

.


Related Links
Carnegie Institution
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
The 'genetics of sand' may shed new light on evolutionary process over millions of years
Southampton UK (SPX) Aug 15, 2013
An evolutionary ecologist at the University of Southampton, is using 'grains of sand' to understand more about the process of evolution. Dr Thomas Ezard is using the fossils of microscopic aquatic creatures called planktonic foraminifera, often less than a millimetre in size, which can be found in all of the world's oceans. The remains of their shells now resemble grains of sand to the nak ... read more


EARLY EARTH
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

EARLY EARTH
Opportunity Reaches Base of 'Solander Point'

NASA launches new Russian-language Mars website

Big ice may explain Mars' double-layer craters

Full Curiosity Traverse Passes One-Mile Mark

EARLY EARTH
Space to become tourist destination in the future

HI-SEAS Mission Now in its Final Days

College of Law launches doctorate in space law

Study: Teleportation would have a slight time-to-transmit problem

EARLY EARTH
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

EARLY EARTH
ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

Japanese Cargo Spacecraft Docks with ISS

NASA's Firestation on way to ISS

EARLY EARTH
EUTELSAT spacecraft ready for integration to Ariane 5

Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

EARLY EARTH
Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

New Explorer Mission Chooses the 'Just-Right' Orbit

EARLY EARTH
Scientists create light/heat regulating window coating

Bubbles are the new lenses for nanoscale light beams

New insights into the polymer mystique for conducting charges

Toxicologist says NAS panel 'misled the world' when adopting radiation exposure guidelines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement