Subscribe free to our newsletters via your
. 24/7 Space News .

Curious About Life: Interview with David Grinspoon
by Nola Taylor Redd for Astrobiology Magazine
Moffett Field CA (SPX) Sep 26, 2012

David Grinspoon, co-investigator for the RAD instrument, in a Mars Pathfinder display. Credit: NASA.

The Mars Science Laboratory Curiosity rover has 10 science instruments, and each will be used in the coming weeks and months to help characterize the environment of Mars and determine if the planet ever had the potential for life.

The Radiation Assessment Detector (RAD) studies the presence of radiation at the Martian surface for the first time. The instrument will be able to tell how much radiation is penetrating the Martian atmosphere to reach the surface. David Grinspoon, of the Denver Museum of Nature and Science, is one of the scientists that will use RAD to attempt to determine how the radiation will affect life that could have existed on or under the surface.

What kind of research do you usually do?
Well, I'm an astrobiologist, and I come from a planetary science background, so in a very broad sense, I study the evolution of planetary environments. I'm most interested in terrestrial or Earth-like planets, although I dabble in some other kinds of planets, too. I do comparative studies of climate evolution, and the interactions between planetary atmosphere and surfaces and their radiation environment, and try to understand the environmental factors that can affect a planet's habitability, and how they change over time. Ultimately, I'm trying to understand planetary evolution with a focus on the potential habitability of other planets.

What do you do specifically with MSL?
I am a co-investigator on the RAD team. RAD is the Radiation Assessment Detector, and it's an instrument that is allowing us for the first time to directly measure the high energy radiation at the surface of Mars that can be harmful for life. But in some instances, it might also be beneficial for life. My role on the RAD team is to consider the implications for astrobiology.

That involves looking at the effect of high energy radiation on complex organic molecules that could lead to life or could betray the existence of life. It also involves studying the effect of high energy radiation on living cells, potential life on Mars today and life in the past on Mars, and finally, the effect of radiation on populations of organisms. Radiation is one of the important factors in evolution. It causes mutation, and some level of mutation is actually good for evolution.

We're measuring that at the surface, as well as trying to understand how it propagates into the subsurface. We're trying to understand the present day radiation flux, or the amount of radiation on Mars, to help us do a better job at modeling the radiation in the past on Mars when the planet had a different atmosphere and filtered radiation in different ways.

Over the lifetime of Curiosity, are you expecting those numbers to change, or do you expect to get essentially the same measurements three years down the road that you're getting today?

We expect it to change for a few reasons. The main reason is that one of the major sources of radiation is from the Sun, and the Sun is changeable. In particular, there are solar flares and solar storms, and there are events that happen on the Sun that release streams of energetic particles. Some of them hit Mars, and we expect that to be happening occasionally while we're on the surface with Curiosity. We should be able to measure those changes directly as they happen, in response to changes on the Sun.

Also, there are other kinds of more subtle changes. The eleven-year solar cycle changes the flux of galactic cosmic rays-the really high energy particles coming from outside our solar system. This is a case where a long lifetime of the rover, lasting many years, will help us because those changes occur over years. So for many reasons, we're hoping for a long, healthy life for our instrument and for the rover.

Then, also, there are potential changes in altitude. As Curiosity climbs Mt. Sharp over the next couple of years, we may actually be able to measure subtle changes in radiation at different altitudes, because it's filtering through different amounts of the atmosphere.

How does your work help to answer astrobiology questions?
We've measured radiation in interplanetary space, and even in Mars orbit before, but never on the surface. We've modeled what we think the radiation flux is at the surface, but that depends on really understanding the way radiation transmits through the atmosphere. Curiosity will help us to learn how to predict radiation on the surface of a planet in general, and Mars in particular.

Once we do that, we can do a better job with understanding what the radiation ought to be doing at different depths in the soil. On Mars, that's a big deal, because if there is life today, then it's probably underground . Radiation is one of two or three major threats to potential life in the near surface of Mars, so we can study how this compares at different depths to other threats, such as the presence of hydrogen peroxide and other strong oxidants in the soil that can destroy organic matter. But the question is, what is the depth at which complex organics aren't destroyed by these different processes?

In a practical way, it can help with the Curiosity mission because we should be able to help with sampling strategy. One of the major goals of the mission is to search for the traces of organic evolution in the past of Mars and with our measurements we can give input into the depths and what kinds of locations on the surface might be most promising to find complex organics. Of course, any actual constraints on possible living cells in the present and in the past are very important, as well.

The astrobiology community can then do a better job at understanding what the environment looks like in different depths of the Martian soil today and in the past, with respect to radiation, which was probably one of the major limiting factors for biology on a planet like Mars. Mars does not have an atmosphere and does not have a magnetic field today so the planet doesn't have the protection from radiation that our atmosphere and magnetic fields provide us on Earth.

So my last question is, how cool is it to tell people that you're on the RAD team?
I love it. It's fun because it's RAD, literally, but it's also "rad" figuratively and descriptively. It's a radical thing to be doing, to have helped propose and then operate and learn from an instrument on Mars. I can't think of anything that would be more "rad" and exciting. Yeah, we need to milk that some more.


Related Links
Astrobiology Magazine
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Life in the extreme
Raleigh NC (SPX) Sep 25, 2012
Life in extreme environments - hot acids and heavy metals, for example - can apparently make very similar organisms deal with stress in very different ways, according to new research from North Carolina State University. One single-celled organism from a hot spring near Mount Vesuvius in Italy fights uranium toxicity directly - by eating the heavy metal and acquiring energy from it. Anothe ... read more

China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

A windshield wiper for Mars dust

Curiosity Finishes Close Inspection of Rock Target

Where is Deimos?

Professor says NASA's Martian weather reports show extreme pressure swings

B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

Russia to send all-novice crew to ISS

ATV undocking postponed

Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

California Governor Signs the Spaceflight Liability and Immunity Act

Processing is underway with the next Automated Transfer Vehicle to be orbited by Arianespace

Fueling underway with the Galileo satellites for next Soyuz launch from French Guiana

SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

Pigs' revenge as 'Angry Birds' makers launch new game

Basing of first US Space Fence facility announced

US Bank admits 'attacks,' says customer data safe

Date palm juice: A potential new 'green' anti-corrosion agent for aerospace industry

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement