Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
CryoSat goes to sea
by Staff Writers
Paris, France (ESA) May 31, 2012


An Earth-orbiting radar cannot see the ocean floor, but it can measure ocean-surface height variations induced by the topography of the ocean floor. The gravitational pull of the seafloor produces minor variations in ocean surface height. Seafloor mapping by ships is much more accurate than radar altimeter mapping, but to date only 10% of the seafloor has been charted this way. A complete mapping of the deep oceans using ships would take 200 ships navigating Earth, 24 hours a day, for an entire year at a cost of billions of dollars. Mapping using satellite radars can cover a larger area in a shorter amount of time. When interesting features are discovered in satellite measurements, they can later be surveyed in fine detail by ships. Credits: Scripps Institution of Oceanography.

CryoSat was launched in 2010 to measure sea-ice thickness in the Arctic, but data from the Earth-observing satellite have also been exploited for other studies. High-resolution mapping of the topography of the ocean floor is now being added to the ice mission's repertoire. The main objective of the polar-orbiting CryoSat is to measure the thickness of polar sea ice and monitor changes in the ice sheets that blanket Greenland and Antarctica.

But the satellite's radar altimeter is not only able to detect tiny variations in the height of the ice but it can also measure sea level.

The topography of the ocean surface mimics the rises and dips of the ocean floor due to the gravitational pull. Areas of greater mass, such as underwater mountains, have a stronger pull, attracting more water and producing a minor increase in ocean-surface height.

Therefore, instruments that measure sea-surface height incidentally map the ocean floor in previously uncharted areas.

There have been several recent global gravity missions, such as ESA's GOCE satellite, that provide extraordinarily accurate measurements of gravity at the spatial resolution of hundreds of kilometres.

But CryoSat's radar altimeter can sense the gravity field at the ocean surface, so that seafloor characteristics at scales of 5-10 km are revealed. This is the first altimeter in 15 years to map the global marine gravity field at such a high spatial resolution.

Recent studies at the Scripps Institution of Oceanography in San Diego, USA, found that the range precision of CryoSat is at least 1.4 times better than the US's Geosat or ESA's ERS-1.

They estimate that this improved range precision combined with three or more years of ocean mapping will result in global seafloor topography - bathymetry - that is 2-4 times more accurate than measurements currently available.

"We know more about the surfaces of Venus and Mars than we do about the bathymetry of deep oceans," said David Sandwell from the Scripps Institution of Oceanography in the US.

"This new mapping from CryoSat will revolutionise our understanding of ocean floor tectonics and reveal, perhaps, 10 000 previously uncharted undersea volcanoes."

Most satellite radar altimeters such as the one on the joint CNES/NASA/Eumetsat/NOAA Jason-2 follow repeated ground-tracks every 10 days to monitor the changes in ocean topography associated with ocean currents and tides.

CryoSat's 369-day repeat cycle provides a dense mapping of the global ocean surface at a track spacing of over 4 km. Three to four years of data from CryoSat can be averaged to reduce the 'noise' due to currents and tides and better chart the permanent topography related to marine gravity.

.


Related Links
CryoSat at ESA
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
LiDAR Technology Reveals Faults Near Lake Tahoe
Carnelian Bay CA (SPX) May 30, 2012
Results of a new U.S. Geological Survey study conclude that faults west of Lake Tahoe, Calif., referred to as the Tahoe-Sierra frontal fault zone, pose a substantial increase in the seismic hazard assessment for the Lake Tahoe region of California and Nevada, and could potentially generate earthquakes with magnitudes ranging from 6.3 to 6.9. A close association of landslide deposits and ac ... read more


EARTH OBSERVATION
UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

EARTH OBSERVATION
Mars missions may learn from meteor Down Under

Waking Up with the Sun's Rays

NASA Funded Research Shows Existence of Reduced Carbon on Mars

Did Ancient Mars Have a Runaway Greenhouse?

EARTH OBSERVATION
New Moon for India

Boeing Completes Software PDR Of New Crew Ship

NASA hails 'new era' in exploration

CU astronaut-alumnus Scott Carpenter looks back at 50th anniversary of Aurora 7 mission

EARTH OBSERVATION
China launches telecommunication satellite

Tiangong 1 Ready To Meet Shenzhou 9

Sri Lanka plans to launch its first satellite in 2015

When Will Shenzhou 9 Be Launched

EARTH OBSERVATION
Capillarity in Space - Then and Now, 1962-2012

Dragon on board

SpaceX Launches Falcon 9 Dragon on Historic Mission

SpaceX Dragon Transports Student Experiments to Space Station

EARTH OBSERVATION
SpaceX Dragon capsule splash lands in Pacific

US cargo ship on return voyage from space station

US cargo vessel prepares to leave space station

Once Upon a Time

EARTH OBSERVATION
Venus transit may boost hunt for other worlds

NSO To Use Venus Transit To Fine-Tune Search For Other Worlds

Newfound exoplanet may turn to dust

Cosmic dust rings no guarantee of planets

EARTH OBSERVATION
Short movies stored in an atomic vapor

Oracle aims to dethrone IBM in business hardware

Mathematicians can conjure matter waves inside an invisible hat

VTT researcher finds explanation for friction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement