Subscribe free to our newsletters via your
. 24/7 Space News .

Cosmology in the lab using laser-cooled ions
by Staff Writers
Ulm, Germany (SPX) Aug 14, 2013

This shows ytterbium ions in an ion Coulomb crystal, taken with an EMCCD camera (electron multiplying CCD camera). The ionized atoms fluoresce in the laser light; the distance between the ions is approx. 10 um to 20 um. In the upper rows, different symmetrical ion arrangements (phases) are encountered in the central area of the Coulomb crystal: (a) linear, like a string of pearls (symmetrical to the rotational axis); (b) two-dimensional in zigzag (Z2 symmetry), and (c) as a three-dimensional helix. If, however, a fast transition from one phase to another is induced with force, irregularities occur: (d) localized defect between two areas which are actually symmetrical, and (e) extended defect in which the ions slowly change from one zigzag orientation to its mirror symmetry. Credit: PTB.

Scientists would love to know which forces created our universe some 14 billion years ago. How could - due to a breaking of symmetry - matter, and thus stars and galaxies, be created from an originally symmetrical universe in which the same conditions prevailed everywhere shortly after the Big Bang. Now, the Big Bang is an experiment that cannot be repeated. But the principle of symmetry and its disturbance can definitely be investigated under controlled laboratory conditions.

For this purpose, scientists from the Excellence Cluster QUEST* at the Physikalisch-Technische Bundesanstalt (PTB) used laser-cooled ions in so-called "ion Coulomb crystals".

They were able to show for the first time how symmetry breaking can be generated in a controlled manner and how the occurrence of defects can then be observed. Realizing these so-called "topographical defects" within a well-controlled system opens up new possibilities when it comes to investigating quantum phase transitions and looking in detail into the non-equilibrium dynamics of complex systems.

The results have been published in the current issue of the scientific journal "Nature Communications".

Within the scope of an international cooperation with colleagues from the Los Alamos National Lab (USA), from the University of Ulm (Germany) and from the Hebrew University (Israel), PTB researchers have now, for the first time, succeeded in demonstrating topological defects in an atomic-optical experiment in the laboratory.

Topological defects are errors in the spatial structure which are caused by the breaking of the symmetry when particles of a system cannot communicate with each other.

They form during a phase transition and present themselves as non-matching areas (Fig. 1). For their activities, the scientists used the symmetry properties of ion Coulomb crystals which are comparable to those of the early universe.

The experimental challenge for the researchers working with Tanja Mehlstaubler consisted in being able to control a complex multi-particle system and to induce an intentional change in the external conditions to obtain the symmetry breaking. This was achieved by means of ytterbium ions which were trapped in so-called "radio-frequency ion traps" in ultra-high vacuum and were cooled down to a few millikelvin with the aid of laser light.

The trapped, positively charged particles repel each other inside the trap and, at such ultra-low temperatures, take on a crystalline structure (Fig. 2, a-c). Precise ion traps which were developed for metrological applications hereby allow a great control of the ultra-cold particles and of the ambient parameters.

If the parameters of the trap enclosure are varied faster than the speed of sound in the crystal, then topological defects occur (Fig. 2, d-e) while the ions are seeking a new equilibrium condition in the crystal.

The stability of these effects was investigated and optimized by means of numerical simulations. This provides an ideal system to investigate the physical properties of symmetry-breaking transitions with the highest sensitivity. Thereby, the spontaneous re-orientation of the Coulomb crystal follows the same rules as those describing the early universe after the Big Bang.

The researchers' work is closely related to the so-called Kibble-Zurek mechanism established by Tom Kibble and Wojciech Zurek. This theory was based on Kibble's thoughts about special topological defects in the early universe: fractions of seconds after the Big Bang, a symmetry breaking took place, and the young universe had to "decide" which new state to adopt.

Everywhere where individual areas of the universe could not communicate their decisions to each other, topological defects such as, e.g., cosmological strings and domain walls may have been created. But the Kibble-Zurek mechanism also allows statistic statements on the occurrence of defects in phase transitions in general.

Due to its universal character, this theory is applicable to many fields of physics such as, e.g., the observation of the transition from metals to superconductors or the transition from ferromagnetic to paramagnetic systems.

With its work, the international group of researchers has now shown that the Kibble-Zurek mechanism can be transferred to the relatively simple laboratory system with laser-cooled ion Coulomb crystals, and they have demonstrated that the occurring topological defects depend on the speed at which the changes occur. Related experiments which were run simultaneously at the Johannes Gutenberg University Mainz (JGU) led to similar results.

The new system now demonstrated will soon allow further experiments on phase transitions in classical systems and in the quantum universe as well as tests in the field of nonlinear physics (e.g. solitons) to be performed in a well-controlled comparative system. In doing so, the physicists have come one step closer to explaining causal relations in nature.

"Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals" Nat. Commun. 4:2291 doi: 10.1038/ncomms3291 Pyka, K.; Keller, J.; Partner, H.L.; Nigmatullin, R.; Burgermeister, T.; Meier, D.M.; Kuhlmann, K.; Retzker A.; Plenio M.B.; Zurek W.H.; del Campo, A.; Mehlstaubler, T.E.


Related Links
Physikalisch-Technische Bundesanstalt (PTB)
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Explosion Illuminates Invisible Galaxy in the Dark Ages
Cambridge, MA (SPX) Aug 07, 2013
More than 12 billion years ago a star exploded, ripping itself apart and blasting its remains outward in twin jets at nearly the speed of light. At its death it glowed so brightly that it outshone its entire galaxy by a million times. This brilliant flash traveled across space for 12.7 billion years to a planet that hadn't even existed at the time of the explosion - our Earth. By analyzing ... read more

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

Opportunity Reaches Base of 'Solander Point'

NASA launches new Russian-language Mars website

Big ice may explain Mars' double-layer craters

Full Curiosity Traverse Passes One-Mile Mark

Space to become tourist destination in the future

HI-SEAS Mission Now in its Final Days

College of Law launches doctorate in space law

Study: Teleportation would have a slight time-to-transmit problem

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

Japanese Cargo Spacecraft Docks with ISS

NASA's Firestation on way to ISS

EUTELSAT spacecraft ready for integration to Ariane 5

Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

New Explorer Mission Chooses the 'Just-Right' Orbit

Toxicologist says NAS panel 'misled the world' when adopting radiation exposure guidelines

Challenges and Practices for Space Mechanisms - Part 2

New 'weird' material may be new class of solids, researchers say

Large Area Picosecond Photodetectors push timing envelope

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement