Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Cosmic rays alter chemistry of lunar ice
by Staff Writers
Durham NH (SPX) Mar 21, 2012


Artist's illustration of the Lunar Reconnaissance Orbiter. CRaTER is the instrument center-mounted at the bottom of LRO. Illustration by Chris Meaney/NASA.

Space scientists from the University of New Hampshire and multi-institutional colleagues report they have quantified levels of radiation on the moon's surface from galactic cosmic ray (GCR) bombardment that over time causes chemical changes in water ice and can create complex carbon chains similar to those that help form the foundations of biological structures.

In addition, the radiation process causes the lunar soil, or regolith, to darken over time, which is important in understanding the geologic history of the moon.

The scientists present their findings in a paper published online in the American Geophysical Union's Journal of Geophysical Research (JGR)-Planets. The paper, titled "Lunar Radiation Environment and Space Weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)," is based on measurements made by the CRaTER instrument onboard NASA's Lunar Reconnaissance Orbiter (LRO) mission.

The paper's lead author is Nathan Schwadron, an associate professor of physics at the UNH Space Science Center within the Institute for the Study of Earth, Oceans, and Space (EOS). Co-author Harlan Spence is the director of EOS and lead scientist for the CRaTER instrument.

The telescope provides the fundamental measurements needed to test our understanding of the lunar radiation environment and shows that "space weathering" of the lunar surface by energetic radiation is an important agent for chemical alteration. CRaTER measures material interactions of GCRs and solar energetic particles (SEPs), both of which present formidable hazards for human exploration and spacecraft operations.

CRaTER characterizes the global lunar radiation environment and its biological impacts by measuring radiation behind a "human tissue-equivalent" plastic.

Serendipitously, the LRO mission made measurements during a period when GCR fluxes remained at the highest levels ever observed in the space age due to the sun's abnormally extended quiet cycle. During this quiescent period, the diminished power, pressure, flux and magnetic flux of the solar wind allowed GCRs and SEPs to more readily interact with objects they encountered - particularly bodies such as our moon, which has no atmosphere to shield the blow.

"This has provided us with a unique opportunity because we've never made these types of measurements before over an extended period of time, which means we've never been able to validate our models," notes Schwadron.

"Now we can put this whole modeling field on more solid footing and project GCR dose rates from the present period back through time when different interplanetary conditions prevailed." This projection will provide a clearer picture of the effects of GCRs on airless bodies through the history of the solar system.

Moreover, CRaTER's recent findings also provide further insight into radiation as a double-edge sword.

That is, while cosmic radiation does pose risks to astronauts and even spacecraft, it may have been a fundamental agent of change on celestial bodies by irradiating water ice and causing chemical alterations. Specifically, the process releases oxygen atoms from water ice, which are then free to bind with carbon to form large molecules that are "prebiotic" organic molecules.

In addition to being able to accurately gauge the radiation environment of the past, the now more robust models can also be used more effectively to predict potential radiation hazards spawned by GCRs and SEPs.

Says Schwadron, "Our validated models will be able to answer the question of how hazardous the space environment is and could be during these high-energy radiation events, and the ability to do this is absolutely necessary for any manned space exploration beyond low-Earth orbit."

Indeed, current models were in agreement with radiation dose rates measured by CRaTER, which together demonstrates the accuracy of the Earth-Moon-Mars Radiation Environment Module (EMMREM) being developed at UNH. EMMREM integrates a variety of models describing radiation effects in the Earth-moon-Mars and interplanetary space environments and has now been validated to show its suitability for real-time space weather prediction.

.


Related Links
Cosmic Ray Telescope for the Effects of Radiation (CRaTER)
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
IBEX spacecraft measures 'alien' particles from outside solar system
San Antonio TX (SPX) Feb 06, 2012
Using data from NASA's Interstellar Boundary Explorer (IBEX) spacecraft, an international team of researchers has measured neutral "alien" particles entering our solar system from interstellar space. A suite of studies published in the Astrophysical Journal provide a first look at the constituents of the interstellar medium, the matter between star systems, and how they interact with our heliosp ... read more


STELLAR CHEMISTRY
Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

China's second moon orbiter outperforms design

Why do We See the Man in the Moon?

STELLAR CHEMISTRY
India's Mars mission gets Rs.125 crore

Europe hopes to save Mars mission

Rep. Schiff Applauds Decision to Reject NASA Request to Divert Mars Funds

Winter Studies of 'Amboy' Rock Continue

STELLAR CHEMISTRY
Experients may force revision of astrophysical models of the universe

Ashton Kutcher signs up for Branson space flight

Prolonged Space Travel Causes Brain and Eye Abnormalities in Astronauts

NASA Viz App Will Now Take Users Across the Universe

STELLAR CHEMISTRY
Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

China hopes to send Long March-5 rocket into space in 2014

STELLAR CHEMISTRY
Russia to launch new ISS module in 2013 as scheduled

DARPA Makes Room On ISS For Programmers

ISS Plays Role in Vaccine Development

Though Shuttle Retired, ISS Still Open For Business, Research Going Strong

STELLAR CHEMISTRY
North Korea to invite observers to satellite launch

The Arianespace "Power of Three" strategy is spotlighted at Washington's Satellite 2012 event

Sea Launch to Launch the Intelsat 27 Spacecraft

SpaceX Signs Launch Agreements With Asia Broadcast Satellite And Satmex

STELLAR CHEMISTRY
Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

Stars with Dusty Disks Should Harbor Earth-like Worlds

Star Comb joins quest for Earth-like planets

STELLAR CHEMISTRY
NY Times curbs free Web access, subscriptions rise

Using Virtual Worlds to 'Soft Control' People's Movements in the Real One

China writers seek $8 mln from Apple in piracy row

News outlets losing ground to tech rivals: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement