Subscribe free to our newsletters via your
. 24/7 Space News .

Cosmic grains of dust formed in supernova explosion
by Staff Writers
Copenhagen, Denmark (SPX) Jul 11, 2014

The image from NASA/ESA Hubble Space Telescope shows the irregular dwarf galaxy that was home to the extremely luminous supernova, SN 2010jl. The image her was taken before the supernova exploded and the position of the extremely massive star is marked. This exploding star had been massive and heavy with more than 40 times the mass of the Sun. Image courtesy ESO.

There are billions of stars and planets in the universe. A star is glowing sphere of gas, while planets like Earth are made up of solids. The planets are formed in dust clouds that swirled around a newly formed star.

Dust grains are composed of elements like carbon, silicon, oxygen, iron, and magnesium. But where does the cosmic dust come from? New research from the Niels Bohr Institute at the University of Copenhagen and Aarhus University shows that not only can grains of dust form in gigantic supernova explosions, they can also survive the subsequent shockwaves they are exposed to.

The results are published in the prestigious scientific journal, Nature.

How the cosmic dust is formed has long been a mystery to astronomers. The elements themselves are formed out of the glowing hydrogen gas in stars. The hydrogen atoms fuse together into heavier and heavier elements and in the fusion process the star emits radiation in the form of light, that is, energy.

When all the hydrogen is exhausted and no more energy can be extracted, the star dies and giant clouds of gas are slung out into space, where they are recycled into new stars in a vast cosmic cycle.

The heavy elements are primarily formed in supernovae, which are massive stars that die in a gigantic explosion. But how do the elements grow into 'larger clumps' like cosmic dust grains?

The mystery of the origin of dust
"The problem has been that even though dust grains composed of heavy elements would form in supernovae, the supernova explosion is so violent that the grains of dust may not survive. But cosmic grains of significant size do exist, so the mystery has been how they are formed and have survived the subsequent shockwaves.

Our research casts new light on this - both on how dust is formed and how it survives the shockwaves," explains Professor Hjorth, head of the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen.

The researchers observe supernovae using the astronomical instrument X-shooter on the European Southern Observatory's Very Large Telescope in Chile. Part of the X-shooter was developed and built by Danish researchers at the Niels Bohr Institute and what is special about the instrument is both that it is extremely sensitive and the three spectrographs observe all light at once - from ultraviolet to visible light to infrared light. This is extremely important when observing phenomena in the distant universe.

Jens Hjorth explains that first they had to wait for the right, luminous supernova to explode. They were lucky and when it happened they initiated an observing campaign. This was a very bright supernova, 10 times brighter than the average supernova.

The exploding star itself had been very massive, more than 40 times the mass of the Sun. Researchers from the Dark Cosmology Centre at the Niels Bohr Institute, Aarhus University, and NASA, among others, followed the explosion right from the start and the following 2 0.5 years and analysed the light from the very bright supernova.

Dust formed through shock interaction
"Sust absorbs light and from our data we could calculate a curve that told us the about the amount of dust, the composition of the dust and the size of the dust grains. This showed something very exciting," explains Christa Gall, a postdoc at Aarhus University and affiliated with the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen.

Christa Gall, who led the project, explains that the first step in dust formation is a mini-explosion, in which the star expels material containing hydrogen, helium and carbon. This gas cloud resides as a shell around the star. There are more of these outbursts and the shell around the star gets denser. Finally, the star explodes and the dense gas cloud take centre stage.

"When the star explodes, the shockwave hits the dense gas cloud like a brick wall. It is all in gas form and incredibly hot, but when the eruption hits the 'wall' the gas gets compressed and cools down to about 2,000 degrees.

At this temperature and density elements can nucleate and form solid particles. We measured dust grains as large as around one micron (a thousandth of a millimeter), which is large for cosmic dust grains. They are so large that they can survive their onward journey out into the galaxy," explains Christa Gall.

The researchers believe they have thus found an avenue for how cosmic dust can form and survive the violent shockwaves of supernovae.


Related Links
University of Copenhagen - Niels Bohr Institute
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Cosmic accounting reveals missing light crisis
Pasadena CA (SPX) Jul 11, 2014
Something is amiss in the Universe. There appears to be an enormous deficit of ultraviolet light in the cosmic budget. The vast reaches of empty space between galaxies are bridged by tendrils of hydrogen and helium, which can be used as a precise "light meter." In a recent study published in The Astrophysical Journal Letters, a team of scientists finds that the light from known populations ... read more

NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

Rover Uses Arm to Study Several Rocks and Takes Panoramic Images

ADS complete heat shields for 2016 ExoMars mission

Martian salts must touch ice to make liquid water

First LDSD Test Flight a Success

Sun Sends More 'Tsunami Waves' to Voyager 1

Privately funded solar spacecraft to launch in 2016

Space Launch System Core Stage Passes Critical Design Review

Taiwan's tourism revenue hits record high in 2013

Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

Orbital Targets July 11 For ISS Commercial Resupply Mission

Space junk damages ISS US segment

NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

RUAG Space wins major Ariane 5 payload fairing contract

Final ATV loaded with cargo after integration on Ariane 5

Russia Launches Rokot Carrier Rocket with Three Satellites

Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

Newfound Frozen World Orbits in Binary Star System

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

ASC Signal Introduces Innovative Carbon-Fiber Antenna

Resolve Supplies Zoom Lenses for NASA Testing

With 'ribbons' of graphene, width matters

Even geckos can lose their grip

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.