Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Cosmic Rays Reveal Upper Atmosphere Secrets
by Staff Writers
Washington DC (SPX) Jan 23, 2009


Soudan Mine. (Courtesy of Fermilab Visual Media Services)

Cosmic-rays detected half a mile underground in a disused U.S. iron-mine can be used to detect major weather events occurring 20 miles up in the Earth's upper atmosphere, a new study has revealed.

Published in the journal Geophysical Research Letters and led by scientists from the UK's National Centre for Atmospheric Science (NCAS) and the Science and Technology Facilities Council (STFC), this remarkable study shows how the number of high-energy cosmic-rays reaching a detector deep underground, closely matches temperature measurements in the upper atmosphere (known as the stratosphere).

For the first time, scientists have shown how this relationship can be used to identify weather events that occur very suddenly in the stratosphere during the Northern Hemisphere winter. These events can have a significant effect on the severity of winters we experience, and also on the amount of ozone over the poles - being able to identify them and understand their frequency is crucial for informing our current climate and weather-forecasting models to improve predictions.

Working in collaboration with a major U.S.-led particle physics experiment called MINOS (managed by the U.S. Department of Energy's Fermi National Accelerator Laboratory), the scientists analysed a four-year record of cosmic-ray data detected in a disused iron-mine in the U.S. state of Minnesota.

What they observed was a strikingly close relationship between the cosmic-rays and stratospheric temperature - this they could understand: the cosmic-rays, known as muons are produced following the decay of other cosmic rays, known as mesons. Increasing the temperature of the atmosphere expands the atmosphere so that fewer mesons are destroyed on impact with air, leaving more to decay naturally to muons. Consequently, if temperature increases so does the number of muons detected.

What did surprise the scientists, however, were the intermittent and sudden increases observed in the levels of muons during the winter months. These jumps in the data occurred over just a few days. On investigation, they found these changes coincided with very sudden increases in the temperature of the stratosphere (by up to 40 oC in places!).

Looking more closely at supporting meteorological data, they realised they were observing a major weather event, known as a Sudden Stratospheric Warming. On average, these occur every other year and are notoriously unpredictable. This study has shown, for the first time, that cosmic-ray data can be used effectively to identify these events.

Lead scientist for the National Centre for Atmospheric Science, Dr Scott Osprey said: "Up until now we have relied on weather balloons and satellite data to provide information about these major weather events.

Now we can potentially use records of cosmic-ray data dating back 50 years to give us a pretty accurate idea of what was happening to the temperature in the stratosphere over this time. Looking forward, data being collected by other large underground detectors around the world, can also be used to study this phenomenon."

Dr Giles Barr, co-author of the study from the University of Oxford added: "It's fun sitting half a mile underground doing particle physics. It's even better to know that from down there, we can also monitor a part of the atmosphere that is otherwise quite tricky to measure".

Interestingly, the muon cosmic-ray dataset used in this study was collected as a by-product of the MINOS experiment, which is designed to investigate properties of neutrinos, but which also measures muons originating high up in the atmosphere, as background noise in the detector. Having access to these data has led to the production of a valuable dataset of benefit to climate researchers.

Professor Jenny Thomas, deputy spokesperson for MINOS from University College London said "The question we set out to answer at MINOS is to do with the basic properties of fundamental particles called neutrinos which is a crucial ingredient in our current model of the Universe, but as is often the way, by keeping an open mind about the data collected, the science team has been able to find another, unanticipated benefit that aids our understanding of weather and climate phenomena."

Dr Osprey commented: "This study is a great example of what can be done through international partnerships and cross-disciplinary research. One can only guess what other secrets are waiting to be revealed."

.


Related Links
- Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Two Cosmic Ray "Hot Spots" Found By Milagro Observatory
Los Alamos NM (SPX) Nov 25, 2008
A Los Alamos National Laboratory cosmic-ray observatory has seen for the first time two distinct hot spots that appear to be bombarding Earth with an excess of cosmic rays. The research calls into question nearly a century of understanding about galactic magnetic fields near our solar system. Joining an international team of collaborators, Los Alamos researchers Brenda Dingus, Gus Sinnis ... read more


STELLAR CHEMISTRY
We Will Have An Indian On The Moon By 2020

The Moon Still Beckons

NASA Radar On Indian Lunar Satellite Looks Deep Inside Shadowed Craters

Ancient Magnetic Field Shows That Moon Once Had A Dynamo In Its Core

STELLAR CHEMISTRY
Mars polar water is pure: study

Satellite Antenna Enables Discovery Of Buried Glaciers On Mars

Martian methane, latest proof that 'Red Planet' is habitable?

Dead Or Alive Mars Pumps Methane

STELLAR CHEMISTRY
Stepping-Stone To The Stars

Russia Wants No More ISS Tourists After 2009

Virgin Galactic Offers Accreditation To Nordic Travel Agents

UF Alumnus Works On New NASA Spacecraft Orion

STELLAR CHEMISTRY
China plans own satellite navigation system by 2015: state media

Fengyun-3A Weather Satellite Begins Weather Monitoring

Shenzhou-7 Monitor Satellite Finishes Mission After 100 Days In Space

China Launches Third Fengyun-2 Series Weather Satellite

STELLAR CHEMISTRY
Spacehab To Support Pre-Launch Preparations For Russian Module

Kogod Students Pioneer Branding Potential Of International Space Station

Russia Tests Phone Home To Santa Network

Orbital Scoops Up Major Space Station Cargo Delivery Contract

STELLAR CHEMISTRY
Japan's H2A Launches GOSAT To Track C02

Japan Resets H2A Launch To Jan 23

First ULA Delta IV Heavy NRO Mission Successfully Lifts Off From Cape Canaveral

New Skies NSS-9 Satellite Arrives In Kourou For February 12 Launch

STELLAR CHEMISTRY
Transit Search Finds Super-Neptune

First Ground-Based Detection Of Light From Transiting Exoplanets

New Study Resolves Mystery Of How Massive Stars Form

Astronomers Observe Heat From Hot Jupiter

STELLAR CHEMISTRY
Heating Gold Makes It Harder Not Softer

Next Generation Cloaking Device Demonstrated

Raytheon Sensor Passes Space Simulation Test

Lockheed Martin Begins Key Test Of First SBIRS Geo Satellite With New Flight Software




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement