Subscribe free to our newsletters via your
. 24/7 Space News .

Climate change to intensify important African weather systems, Stanford scientists say

by Ker Than for Stanford News


Stanford CA (SPX) May 02, 2014 Weather systems that bring rainstorms to many drought-prone areas of northern Africa, carry Saharan dust across the ocean and seed Atlantic hurricanes could grow stronger as a result of human-caused climate change, a new analysis by Stanford scientists suggests.

Known as African easterly waves, or AEWs, these weather systems form above northern Africa during the summer season and travel east to west, toward the Atlantic Ocean.

"Not only are AEWs important for rainfall in West Africa, they also play a role in climate across the Atlantic, including here in the United States," said Noah Diffenbaugh, an associate professor of environmental Earth system science and a senior fellow at the Stanford Woods Institute for the Environment.

The climate of West Africa varies sharply from the wet tropical region along the equator to the very dry Sahara desert in the north. The strip of land that lies between these two extremes, called the Sahel, has experienced some of the most prolonged and severe droughts in the world over the past half century.

AEWs travel from east to west across northern Africa along two tracks. One track lies along the southern Sahel and Guinea coast region. The other track follows the border between the northern Sahel and southern Sahara Desert. Along the northern track, the strength of the AEWs is driven largely by the difference in the ground temperature of the Sahara and the relatively cooler surface temperatures over the Sahel and Guinea Coast farther south. The greater the temperature difference, the more potential energy there is for storm systems such as AEWs to draw from.

Because AEWs have such a strong influence on the climate in Africa and the Atlantic basin, Diffenbaugh and a graduate student in his lab, Christopher Skinner, wanted to understand how a warming atmosphere might affect the strength and track of AEWs. Their research is detailed in the April 28 issue of the Proceedings of the National Academy of Sciences.

Computing a consensus
The pair began by analyzing simulations from 17 computer models of interactions between Earth's ocean and atmosphere. Each model was produced by a different research institute, and each one simulates physical processes in a slightly different way.

"For example, all models need a component that simulates rainfall. There are multiple ways to represent rainfall in a model, and each model does it slightly differently," Skinner said. "By using multiple models we are able to get a better sense of what the possible range of climate responses will be for a given level of greenhouse gases in the atmosphere."

Diffenbaugh and Skinner focused on simulations of AEWs during the period from 1980 to 2005 and simulations of AEWs during a projected future period in which the concentration of atmospheric carbon dioxide is roughly twice what it is today. Although some of the models differed in their simulation of AEWs during the 20th century, nearly all agreed that the winds associated with AEWs would grow stronger by the late-21st century if increases in greenhouse gas emissions continue along their current trajectory.

Additionally, all of the models predicted that as greenhouse gases rise, both the Sahara Desert and the Guinea coast region to the south will heat up, but the desert will warm more than the Guinea region.

"The temperature difference between the desert and the region farther south actually becomes larger than it is today," Skinner said. "Because the strength of the African easterly waves is influenced by the temperature difference between these two regions, we would expect the energy of the AEWs to become larger, and that's what the simulations show."

More dust, increased rain
In particular, the models predict a strengthening in the AEWs that travel near the border of the Sahara and the Sahel. This strengthening could have important impacts on precipitation in the drought-prone Sahel region.

"This is a region that has experienced some of the most severe humanitarian disasters from droughts," Diffenbaugh said. "But there has also been a lot of uncertainty about how global warming could impact rainfall in that region. To see such clear agreement in the response of AEWs to climate change opens the door for increasing our understanding of Sahel precipitation."

A strengthening of waves in this region could also mean more uplift and transport of dust out of Africa and across the Atlantic. In the current climate, these dust plumes deliver life-sustaining nutrients to the ocean but also can affect rainfall and air quality as far away as the Caribbean.

The authors also note that stronger AEWs could influence hurricanes that form in the Atlantic. The African easterly waves themselves don't become hurricanes, but a wave can create a protective environment in which significant rainfall and vertical wind motion can develop. "This convection can serve as the seed for a hurricane," Skinner said.

Not all Atlantic hurricanes are tied to AEWs, but studies have indicated that about 80 percent of the most intense hurricanes are associated with the African disturbances. A stronger AEW could conceivably influence the likelihood that the AEW generates a tropical cyclone, but the authors urge caution in jumping to conclusions.

"Hurricanes will be affected by global warming through changes in sea surface temperature, wind shear, and other environmental variables," Skinner said. "This is just one piece of a very complicated puzzle, but it's an interesting piece that hasn't really been looked at before."


Related Links
Stanford Associate Professor Noah Diffenbaugh and graduate student Christopher Skinner are studying climate change's effects on patterns in the weather systems that bring rain to the Sahara Desert as well as dust to the Atlantic. Image courtesy Jeremy Richards. Weather News at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Safer flying with satcom weather app
Paris (ESA) Apr 29, 2014
Pilots using a satellite service can now receive inflight updates on weather hazards and warn other aircraft of storms they see ahead. This Planet service is offered to regional, business and light aircraft, alerting pilots who are otherwise unaware of storms in their path. Without this, weather updates are not available during flight - all information is gathered before takeoff. In ... read more

John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

Russian Federal Space Agency is elaborating Moon exploration program

Target on Mars Looks Good for NASA Rover Drilling

Mars Rover Switches to Driving Backwards Due to Elevated Wheel Currents

Mission to Mars

Traces of recent water on Mars

NASA Invests in Hundreds of US Small Businesses to Enable Future Missions

Orion Undergoes Simulation Of Intense Launch Vibrations

Orion Exploration Design Challenge Winner Announced

Orion Feels the Vibe During Tests at Kennedy Space Center

China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

Second O3b satellite cluster delivered for upcoming Arianespace Soyuz launch

Court blocks US plan to buy Russian rocket engines

Arianespace to launch Indonesia satellite BRIsat

It's a "go" for Arianespace's Vega launch with Kazakhstan's first Earth observation satellite

Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

Edgy Look at 2D Molybdenum Disulfide

High-Strengh Materials from the Pressure Cooker

Faster Dental Treatment with New Photoactive Molecule

Element 117 confirmed by scientists, closer to being officially named

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.