Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Clemson researchers make optical fibers from common materials
by Staff Writers
Clemson SC (SPX) Aug 15, 2012


File image

Clemson researchers are taking common materials to uncommon places by transforming easily obtainable and affordable materials into fiber. Their findings are published in Nature Photonics, the world's top journal focused on light-based technologies. "We have used a highly purified version of beach sand (silica) for fiber for the last 40 years," said John Ballato, director of the Center for Optical Materials Science and Engineering Technologies at Clemson University.

"As a matter of fact, the 2009 Nobel Prize in Physics was awarded for the development of silica optical fibers. However, while silica has done remarkably well over time, it is now being pushed to its limits for faster and cheaper data and new functionality."

It has gotten to the point where there is so much light packed in fiber cable that the silica material essentially can't handle the intensity and has actually begun interacting and rebelling.

"At high power, the light causes the atoms of the material to vibrate more violently and those vibrations convert some of the light energy into sound energy which restricts the ability of the fiber to carry more power," said Ballato.

"This, in turn, lessens the amount of light that can travel through the fiber, which limits the amount of information that can be sent for telecommunications uses and power for high-energy laser applications,"

The demand for stronger and more durable fiber material is greater than ever and will only increase with technological advancement. Clemson researchers are focusing on providing a material solution for fiber optics, especially one that can be sold commercially.

Their goal is to take a robust, affordable, and easily accessible material that can take the brunt of greater intensity and convert that material into a fiber.

Ballato and his team found that sapphire possesses extraordinary properties that make it exceptionally valuable for high power lasers in which the light intensity interacts with sound waves in the glass and leads to diminished power-handling capabilities.

"Sapphire is new and different in this sense because we're able to use a low-cost and widely used commodity as a fiber," said Ballato. "Sapphire is scalable, acceptable and is a material that people don't think about when it comes to fiber optics. The problem is that sapphire's crystalline structure is not amenable to making into optical fiber using commercially accepted methods."

Ballato actually developed the sapphire fiber to withstand greater intensity and be more useful for high-energy applications than typical commercial fibers.

"Ballato's recent results with sapphire fibers represent a paradigm-shifting development in the field of fiber optics," said Siddarth Ramachandran, associate professor in the electrical and computer engineering at Boston University and an expert in the field.

"Materials long considered to be used only in the realm of free-space optics can now be exploited in fiber geometries, which enable long interaction lengths and novel nonlinear optical effects."

"This research is paving the way for everyday commodities to be imagined for technological uses such as fiber optics," Ballato said. "We're performing additional studies with sapphire and other materials that have similar effects for fiber."

.


Related Links
Clemson University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Reluctant electrons enable 'extraordinarily strong' negative refraction
Boston MA (SPX) Aug 09, 2012
In a vacuum, light travels so fast that it would circle the Earth more than seven times within the blink of an eye. When light propagates through matter, however, it slows by a factor typically less than 5. This factor, called the refractive index, is positive in naturally occurring materials, and it causes light to bend in a particular direction when it shines on, for example, water or glass. ... read more


TECH SPACE
NASA's 'Mighty Eagle' Robotic Prototype Lander Flies Again at Marshall

Roscosmos Announces Tender for Moon Rocket Design

US flags still on the moon, except one: NASA

Another Small Step for Mankind

TECH SPACE
India to launch Mars mission: PM

Mars rover captures crash landing

Obama to NASA experts: 'Let me know if you find Martians'

Opportunity Will Resume Driving Soon

TECH SPACE
Florida Spaceport Stakes Claim to Commercial Missions

Dutch reality show to offer one-way tickets to Mars

NASA, Louisiana Officials Renew Partnership With National Center For Advanced Manufacturing

New US website lets 'crowd' fund college grad startups

TECH SPACE
Hong Kong people share joy of China's manned space program

China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

TECH SPACE
ISS crew to embark on two spacewalks in August

New Way of Turning Station Offers Fuel Savings on Orbit

Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

Russia Launches Space Freighter to Orbital Station

TECH SPACE
Pre launch verifications are underway for next Soyuz mission

GSAT-10 "spreads its wings" in preparation for Arianespace's next Ariane 5 launch

The Spaceport moves into action for Arianespace's next Soyuz mission to orbit two Galileo satellites

Sea Launch Prepares for the Launch of Intelsat 21

TECH SPACE
Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

TECH SPACE
Nano, photonic research gets boost from new 3-D visualization technology

Samsung expands lead in smartphone market: Gartner

Samsung takes on iPad with Galaxy Note tablet

Megaupload boss plans music venture, hints at relaunch




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement