Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Change in Pacific nitrogen content tied to climate change
by Anne M Stark for LLNL News
Livermore CA (SPX) Dec 17, 2013


Living and fossilized coral are gathered from dives in the Hawaiian Islands. A Lawrence Livermore scientist and collaborators have studied coral to determine that a long-term shift in nitrogen content in the Pacific Ocean has occurred as a result of climate change. Image courtesy of NOAA Hawaii Undersea Research Laboratory.

Using deep sea corals gathered near the Hawaiian Islands, a Lawrence Livermore scientist, in collaboration with UC Santa Cruz colleagues, has determined that a long-term shift in nitrogen content in the Pacific Ocean has occurred as a result of climate change.

Overall nitrogen fixation in the North Pacific Ocean has increased by about 20 percent since the mid 1800s -- a shift similar to major paleoceanographic transitions in the sedimentary record -- and this long-term change appears to be continuing today, according to a study published Dec. 15 edition of the journal, Nature.

The study combines a unique compound-specific isotope technique (largely being pioneered at UC Santa Cruz), measured in deep-sea corals, to reconstruct changes in biogeochemical cycles from the North Pacific subtropical ringlike system of ocean currents, the largest contiguous biome in the world.

Using chemical information locked in organic skeletal layers, the team used these ancient corals as detailed recorders of changes at the base of the open Pacific food web over the last 1,000 years. This represents the first detailed biogeochemical records for the planet's largest contiguous ecosystem

"The timing of the change -- at the start of the anthropogenic era (post-industrial, and coming out of the Little Ice Age) -- begs the question as to whether there is more than just a correlation between our record and, for example, Northern Hemisphere temperatures and increased dust deposition due to land use change," said Tom Guilderson, a Livermore scientist working at the Laboratory's Center for Accelerator Mass Spectrometry.

The study, authored by UCSC's Owen Sherwood (now at the University of Colorado in Boulder) and Matt McCarthy and LLNL's Guilderson, is a collaborative project to develop novel isotopic measurements, and use them in long-lived deep sea corals.

Colonial corals can live for millennia, making them likely the world's longest living animals. They deposit layers of protein-rich skeletal materials on that record the chemical signatures of the constant rain of detrital plankton material from the ocean's surface (the corals' food), making these animals akin to "living sediment traps," according to Sherwood.

However, unlike sediment traps, the corals provide highly detailed records not for decades but for up to thousands of years. This aspect is critical in places like the open Pacific, where sediment accumulation is so slow that it is essentially impossible to get meaningful data for recent centuries.

"We reconstructed highly detailed records of how ocean biogeochemical systems have changed through the Holocene period and, in particular, to understand what the 'baselines' really were before instrumental record and dramatic anthropogenic changes began," Guilderson said.

The results may change how we understand open ocean ecosystem stability, Sherwood said. The Pacific contains the largest contiguous ecosystem on the planet. Time series data near Hawaii have shown dynamic decadal scale variability. But the new records from deep corals now show that the decadal-scale time series changes are really only small oscillations superimposed on a dramatic long-term shift at the base of the Pacific ecosystem.

"This also has very significant implications about how we understand, and perhaps, can better predict effects of global warming in the Pacific, but also likely in other subtropical regions," Guilderson said.

.


Related Links
Lawrence Livermore
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Feast and famine on the abyssal plain
Moss Landing, CA (SPX) Nov 13, 2013
Animals living on the abyssal plains, miles below the ocean surface, don't usually get much to eat. Their main source of food is "marine snow"-a slow drift of mucus, fecal pellets, and body parts-that sinks down from the surface waters. However, researchers have long been puzzled by the fact that, over the long term, the steady fall of marine snow cannot account for all the food consumed by anim ... read more


WATER WORLD
China's Lunar Lander May Provide Additional Science for NASA Spacecraft

China plans to launch Chang'e-5 in 2017

Mining the moon is pie in the sky for China: experts

Ancient crater could hold clues about moon's mantle

WATER WORLD
Opportunity Communications Remain Slow Due To Odyssey Issues

New Views of Mars from Sediment Mineralogy

NASA poised to launch Mars atmosphere probe

The Tough Task of Finding Fossils While Wearing a Spacesuit

WATER WORLD
IBM sees five tech-powered changes in next five years

European consortium space company to offer 'affordable' trips to space

Planning group calls for National Space Policy in Britain

Quails in orbit: French cuisine aims for the stars

WATER WORLD
Chinese sci-fi writers laud moon landing

China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

Chinaese moon rover and lander photograph each other

WATER WORLD
Altitude of International Space Station raised

NASA mulls spacewalks to fix space station

NASA reports coolant loop problem at ISS

Space station cooling breakdown may delay Orbital launch

WATER WORLD
India to decide December 27 on GSAT-14 launch date

Arianespace orders 18 rockets for 2 bn euros

Iran sends second monkey into space

SpaceX to bid for rights to historic NASA launch pad

WATER WORLD
Astronomers solve temperature mystery of planetary atmospheres

Nearby failed stars may harbor planet

Innovative instrument probes close binary stars, may soon image exoplanets

Feature of Earth's atmosphere may help in search for habitable planets

WATER WORLD
Inertial Sensor Head shaken but not disturbed

Programming smart molecules

SOFS Take to Water

Rock points to potential diamond haul in Antarctica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement