Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Chandra Helps Explain "Red and Dead Galaxies"
by Staff Writers
Huntsville AL (SPX) Jun 03, 2014


Chandra X-ray Observatory images of four elliptical galaxies. X-ray courtesy NASA/CXC/Stanford Univ/N.Werner et al; Optical courtesy DSS. For a larger version of this image please go here.

NASA's Chandra X-ray Observatory has shed new light on the mystery of why giant elliptical galaxies have few, if any, young stars. This new evidence highlights the important role that supermassive black holes play in the evolution of their host galaxies.

Because star-forming activity in many giant elliptical galaxies has shut down to very low levels, these galaxies mostly house long-lived stars with low masses and red optical colors. Astronomers have therefore called these galaxies "red and dead".

Previously it was thought that these red and dead galaxies do not contain large amounts of cold gas - the fuel for star formation - helping to explain the lack of young stars. However, astronomers have used ESA's Herschel Space Observatory to find surprisingly large amounts of cold gas in some giant elliptical galaxies. In a sample of eight galaxies, six contain large reservoirs of cold gas. This is the first time that astronomers have seen large quantities of cold gas in giant elliptical galaxies that are not located at the center of a massive galaxy cluster.

With lots of cold gas, astronomers would expect many stars to be forming in these galaxies, contrary to what is observed. To try to understand this inconsistency, astronomers studied the galaxies at other wavelengths, including X-rays and radio waves.

The Chandra observations map the temperature and density of hot gas in these galaxies. For the six galaxies containing abundant cold gas, including NGC 4636 and NGC 5044 shown here, the X-ray data provide evidence that the hot gas is cooling, providing a source for the cold gas observed with Herschel. However, the cooling process stops before the cold gas condenses to form stars. What prevents the stars from forming?

A strong clue comes from the Chandra images. The hot gas in the center of the six galaxies containing cold gas appears to be much more disturbed than in the cold gas-free systems.

This is a sign that material has been ejected from regions close to the central black hole. These outbursts are possibly driven, in part, by clumpy, cold gas that has been pulled onto the black hole. The outbursts dump most of their energy into the center of the galaxy, where the cold gas is located, preventing the cold gas from cooling sufficiently to form stars.

The other galaxies in the sample, NGC 1399 and NGC 4472, are also forming few if any stars, but they have a very different appearance. No cold gas was detected in these galaxies, and the hot gas in their central regions is much smoother.

Additionally, they have powerful jets of highly energetic particles, as shown in radio images from the National Science Foundation's Karl G. Jansky Very Large Array. These jets are likely driven by hot gas falling towards the central supermassive black holes.

By pushing against the hot gas, the jets create enormous cavities that are observed in the Chandra images, and they may heat the hot, X-ray emitting gas, preventing it from cooling and forming cold gas and stars.

The centers of NGC 1399 and NGC 4472 look smoother in X-rays than the other galaxies, likely because their more powerful jets produce cavities further away from the center, where the X-ray emission is fainter, leaving their bright cores undisturbed.

A paper describing these results was published in the February 25, 2014 issue of the Monthly Notices of the Royal Astronomical Society and is available online. The first author is Norbert Werner from Stanford University in California.

.


Related Links
Chandra X-ray Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
The 'Serpent' Star-forming Cloud Hatches New Stars
Pasadena CA (JPL) May 29, 2014
Stars that are just beginning to coalesce out of cool swaths of dust and gas are showcased in this image from NASA's Spitzer Space Telescope and the Two Micron All Sky Survey (2MASS). Infrared light has been assigned colors we see with our eyes, revealing young stars in orange and yellow, and a central parcel of gas in blue. This area is hidden in visible-light views, but infrared light ca ... read more


STELLAR CHEMISTRY
Earth's gravitational pull stretches moon surface

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

Water in moon rocks provides clues and questions about lunar history

NASA Invites Public to Select Favorite Moon Image for Lunar Orbiter Anniversary Collection

STELLAR CHEMISTRY
LDSD Testing for Large Payloads to Mars

New Mars Lander to Probe Interior of Red Planet

A habitable environment on Martian volcano

Mars Curiosity rover may have transported Earth bacteria to Mars

STELLAR CHEMISTRY
SpaceX founder unveils his 'future of space travel' capsule

First Phase To Certify New US Space Transport System Completed

NASA faces identity crisis, funding battle

US may lose 'star wars' to Russia

STELLAR CHEMISTRY
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

STELLAR CHEMISTRY
Russian Soyuz with New Crew Docks at ISS in Automatic Mode

Russian, German and US astronauts dock with ISS

Six-Person Station Crew Enjoys Day Off Following Docking

ESA astronaut Alexander Gerst arrives at ISS

STELLAR CHEMISTRY
SpaceX unveils capsule to ferry astronauts to space

Roscosmos Scolded for 'Pestering Society' with Proton Crash Theories

Elon Musk to present manned DragonV2 spacecraft on May 29

Russia puts satellite in orbit from sea platform after 2013 flop

STELLAR CHEMISTRY
'Godzilla' of Earths circles distant star

Astronomers find a new type of planet: The 'mega-Earth'

Because you can't eat just one: Star will swallow two planets

'Neapolitan' exoplanets come in three flavors

STELLAR CHEMISTRY
Russia preparing to launch Okno space surveillance system at full capacity

Citizen Scientists Contact Vintage Spacecraft

New Method of Wormlike Motion Lets Gels Wiggle through Water

Stronger than steel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.