Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Cesium atoms shaken, not stirred, to create elusive excitation in superfluid
by Staff Writers
Chicago IL (SPX) Feb 13, 2015


University of Chicago scientists can create an exotic, particle-like excitation called a roton in superfluids with the tabletop apparatus pictured here. Posing from left are graduate students Li-Chung Ha and Logan Clark, and physics Professor Cheng Chin. Image courtesy Rob Kozloff, University of Chicago.

Scientists discovered in 1937 that liquid helium-4, when chilled to extremely low temperatures, became a superfluid that could leak through glass, overflow its containers, or eternally gush like a fountain.

Future Nobel laureate Lev Landau came along in 1941, predicting that superfluid helium-4 should contain an exotic, particle-like excitation called a roton. But scientists, including Landau, Nobel laureate Richard Feynman and Wolf Prize recipient Philippe Nozieres have debated what structure the roton would take ever since.

"Even nowadays, after seven decades, it remains an issue of interest and controversy," said Cheng Chin, professor in physics at the University of Chicago. But in a new paper published Feb. 3, 2015, in Physical Review Letters, Chin and four associates describe how they can create roton structure in a new system: atomic superfluid of cesium-133 in the laboratory.

Scientists who specialize in superfluids have found it difficult to study rotons. Chin's team has pioneered a system that will make it much easier to reveal the long-cloaked mysteries of the roton.

The UChicago researchers generated artificial rotons using what they call the shaken lattice technique. With this technique, the physicists created a superfluid in a one-foot cylindrical chamber cooled to a temperature of approximately 15 nano-Kelvin, just a tiny fraction of a degree above absolute zero (minus 459.6 degrees Fahrenheit).

During the experiment, 30,000 cesium atoms became trapped in a crossing pattern of infrared laser beams. This optical lattice holds the atoms fast, like eggs in a crate, while gently shaking them.

Superfluidity in 10 seconds
"We need about 10 seconds to reach that temperature to prepare a superfluid as our first step," Chin said. "It is a brand new idea that shaking the optical lattice leads to the emergence of the rotons."

The superfluid persists for several seconds, during which time the physicists create the roton structure and image it to see how the structure influences the superfluid's properties.

Competing research teams at the University of Science and Technology in Shanghai, China, and at Washington State University also succeeded in creating roton structure using a different technique within few weeks after the Chicago group announced the result last summer. Those teams used additional laser beams to excite the atoms in the proper way.

"We approached the challenge to create rotons based on a new technology that we recently developed," said Li-Chung Ha, a graduate student in physics at UChicago. The lead author of the Physical Review Letters paper, Ha played a key role in developing the shaken lattice and in-situ imaging techniques used to collect the roton data.

Chin's research group developed the lattice shaking technique over a period of years. In 2013, Ha, Chin and UChicago postdoctoral scholar Colin V. Parker published a paper in Nature Physics showing that a variation of that technique could reveal interesting magnetic features in ultracold atoms. Later, they realized that they could use the same technique to create roton structure.

Engineering roton excitation
"With this technique, we can engineer an excitation spectrum of the atoms," Ha said. This feature, a hallmark of superfluid helium, is one of three pieces of evidence reported in the paper indicating that Ha and his associates had successfully created roton structure.

The other two lines of evidence include the measurements of roton energy confirming that its manifestation depends on the atomic interaction. The UChicago team also observed how roton excitations affect the superfluidity by dragging a laser speckle pattern across the superfluid.

"Experimentally, we see that a superfluid will become weaker in the presence of roton structure," Chin said. A superfluid can flow with no friction up to a maximum speed, called "superfluid critical velocity." Rotons suppress the critical velocity, which is the opposite of the desired goal to improve the robustness of superfluidity.

How robust can superfluidity be?
Researchers have proposed many ways to increase the robustness of superconductors, and atomic superfluids offer experimental means to test these ideas, Chin said.

"Superconductors can transfer energy without dissipation, that is, without energy loss, so a robust superconducting material can find widespread applications everywhere," he said. At the moment, power companies still use copper wire for energy transmission, which carries with it energy losses ranging from 30 to 40 percent from power plant to home or office.

Switching to superconductivity is currently impractical because superconducting material is expensive, and it works only at extremely low temperatures. More importantly, Chin noted, "a single superconducting wire can only carry a limited amount of energy."

"Our experiments provide a new platform to study excitations of a superfluid. They can help us better identify the key issues that limit the robustness of superconductivity," he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Chicago
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
On quantum scales, there are many second laws of thermodynamics
London UK (SPX) Feb 10, 2015
New research from UCL and the Universities of Gdansk, Singapore, and Delft has uncovered additional second laws of thermodynamics which complement the ordinary second law of thermodynamics, one of the most fundamental laws of nature. These new second laws are generally not noticeable except on very small scales, at which point, they become increasingly important. The ordinary second law st ... read more


TIME AND SPACE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

TIME AND SPACE
Scientists fail to explain strange plumes spotted on Martian surface

NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Rover Nearing Marathon Achievement

NASA's Curiosity Analyzing Sample of Martian Mountain

TIME AND SPACE
Critical NASA Science Returns to Earth aboard SpaceX Dragon Spacecraft

Industry: Risk aversion costs more than 'fast failure'

45th Space Wing, SpaceX sign first-ever landing pad agreement at the Cape

Russian research team explores vision complications for astronauts

TIME AND SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TIME AND SPACE
NASA, Space Station Partners Announce Future Mission Crew Members

Europe destroys last space truck to ISS

Camera to record doomed ATV's disintegration - from inside

ATV to bid farewell to Space Station for last time

TIME AND SPACE
SpaceX launches deep-space weather observatory

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

TIME AND SPACE
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

TIME AND SPACE
Saab producing components, sub-systems for Marine Corps radar

Cosmic "Reionization" Is More Recent than Predicted

DSCOVR: Mission Success for Moog Engines Over a Decade Later

Measurement of key molecule increases accuracy of combustion models




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.