Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Carbon Atmosphere Discovered On Neutron Star
by Staff Writers
Boston MA (SPX) Nov 05, 2009


The neutron star at the center of Cas A is found to have an ultra-thin carbon atmosphere. Credit X-ray: NASA/CXC/Southampton/W. Ho et al.; Illustration: NASA/CXC/M.Weiss

Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object.

"The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere."

By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed.

The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity.

By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because - like a lightbulb that shines consistently in all directions - this neutron star would be unlikely to display any changes in its intensity as it rotates.

Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter.

"Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution."

Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth.

"For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers."

In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star.

The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon.

The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations.

It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of stronger magnetic fields as they age.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

.


Related Links
Chandra X-ray Center
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Physicist Identifies Mysterious Core Left By Exploding Star
Edmonton, Canada (SPX) Nov 05, 2009
University of Alberta physics professor Craig Heinke has solved a mystery that lies 11,000 light years beyond Earth. A supernova (or exploding star), 20 times heavier than our sun blasted apart, leaving behind a small core that has puzzled astronomers since its discovery in 1999. Heinke and a colleague have identified the 20 kilometre-wide remnant of the supernova as a neutron star. It's ... read more


STELLAR CHEMISTRY
JAXA Releases KAGUYA (SELENE) Data Archives To The Public

Kangaroos On The Moon

NASA Mission To Study Moon's Fragile Atmosphere

NASA Instruments Reveal Water Molecules On Lunar Surface

STELLAR CHEMISTRY
Professor To Predict Weather On Mars

Opportunity Motors South

Amnesia-Like Behavior Returns On Spirit

A Mars Rover Named "Curiosity"

STELLAR CHEMISTRY
Fantastic Voyage

NASA lists advisory council restructuring

Defining A Flexible Path To Human Space Exploration

Space Auction Promises The Moon

STELLAR CHEMISTRY
China's military making strides in space: US general

China's military making strides in space: US general

'Father of China space programme' dies: state media

China's Fourth Satellite Launch Center To Be Built In Hainan

STELLAR CHEMISTRY
ESA Calls For Ideas For Climate Experiments On The ISS

ESA to transfer Tranquility node to NASA

Space Foundation Wants The ISS Operating Until At Least 2020

Russian cargo ship docks with ISS

STELLAR CHEMISTRY
Russian rockets shipped for French Guiana launch

Russia launches European satellites into space

SMOS And Proba-2 Ready For Launch

Follow The Launch Of ESA's SMOS And Proba-2 Satellites

STELLAR CHEMISTRY
Exoplanet House Of Horrors

CoRoT Mission Extended Until 2013

Nobel Prize-Winning Science - Springboard For Planet Hunting

32 New Exoplanets Found

STELLAR CHEMISTRY
Box office boost shows 3D is here to stay

NRL Sensor Provides Critical Space Weather Observations

Touchscreen smartphones being snatched up in US

General Dynamics Developing High-Speed Data Encryptor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement