Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Can heat be controlled as waves?
by Staff Writers
Atlanta, GA (SPX) Jun 28, 2015


File image: thermoelectric material.

A growing interest in thermoelectric materials -- which convert waste heat to electricity -- and pressure to improve heat transfer from increasingly powerful microelectronic devices have led to improved theoretical and experimental understanding of how heat is transported through nanometer-scale materials.

Recent research has focused on the possibility of using interference effects in phonon waves to control heat transport in materials. Wave interference is already used to control electronic, photonic and acoustic devices. If a similar approach can be used in thermal transport, that could facilitate development of more efficient thermoelectric and nanoelectronic devices, improved thermal barrier coatings, and new materials with ultralow thermal conductivity.

A progress article published June 23 in the journal Nature Materials describes recent developments and predicts future advances in phonon wave interference and thermal bandgap materials.

"If you can make heat behave as a wave and have interference while controlling how far it moves, you could basically control all the properties behind heat transport," said Martin Maldovan, an assistant professor in the School of Chemical and Biomolecular Engineering and School of Physics at the Georgia Institute of Technology, and the paper's author. "This would be a completely new way to understand and manipulate heat."

In the classic definition, heat consists of vibrations in the atomic lattices of materials. The more vibrations in a material's structure, the hotter the material. And in the same way that white light is actually composed of many different colors of light, these thermal phonons are made up of many different frequencies -- each carrying varying amounts of heat.

Recent developments have shown that thermal phonons can interfere with their own reflections. The observation suggests that thermal phonons must exist as waves similar to electronic, photonic or acoustic waves. This interference could potentially be used to modify the velocity of phonons and the density of states, creating energy bandgaps that are forbidden for phonon waves. Utilization of similar bandgaps in optical and electronic materials has been key to developing a wide range of useful devices.

Until now, heat transport in nanostructured materials has largely been controlled by introduction of atomic-scale impurities, interfaces, surfaces and nanoparticles that reduce heat flow by scattering the phonons diffusely. Controlling wave effects could facilitate new approaches involving the specular reflection and transmission of thermal vibrations at interfaces.

"Considering the remarkable success achieved when using electronic, photonic and phononic wave interference to manipulate electrons, light and sound waves, it is certainly valuable to extend these theories to thermal vibrations, thereby creating a fundamentally new approach for manipulating heat flow," Maldovan wrote in the paper.

Thermoelectric materials capture waste heat from sources such as automobile exhausts or industrial processes to produce electricity. Improving these materials will require further reducing thermal conductivity to improve their efficiency.

On the other hand, microelectronics designers want to increase thermal conductivity to transfer heat away from powerful and tiny devices. Developers of fuel cells and other conversion devices also need to improve the control of heat.

Maldovan wrote the article to clarify issues involved in thermal transport, and to interest others into the field. Ultimately, researchers will use this new information about heat transport to design better materials.

"These new wave phenomena can be used to create materials with low thermal conductivity," said Maldovan. "We are trying to create a thermal bandgap, but that is not so easy to do."

The search for thermal phononic wave materials will focus on semiconductors much like those used in microelectronics, Maldovan said. But while the silicon used in microelectronics had a natural bandgap, scientists had to create a band gap in photonics and acoustic materials, and the same will be true for thermal materials. Likely materials include silicon-germanium, gallium and aluminum arsenide and certain oxide superlattices.

Researchers have for many years focused on how far heat may be transported in materials. For the future, research will address the velocity of that transport, and how much heat is moved in the process, Maldovan predicted. He compares heat transport to a more familiar issue -- human transportation.

"If you want to move a lot of people, you need a bus that will carry a lot of people," he said. "You also want a vehicle that can move quickly because if you move faster, you can carry more people farther in less time."

The next few years should bring about significant clarification concerning the role of interference and bandgaps in thermal materials, Maldovan predicted. That will allow continued progress in the materials needed for thermal control.

"It's now a very cool thing to understand heat," he said.

Martin Maldovan, "Phononic wave interference and thermal bandgap materials," (Nature Materials, 2015).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Engineers break power and distance barriers for fiber optic comms
San Diego CA (SPX) Jul 09, 2015
Electrical engineers have broken key barriers that limit the distance information can travel in fiber optic cables and still be accurately deciphered by a receiver. Photonics researchers at the University of California, San Diego have increased the maximum power - and therefore distance - at which optical signals can be sent through optical fibers. This advance has the potential to incre ... read more


ENERGY TECH
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

ENERGY TECH
Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

Opportunity Rover's 7th Mars Winter to Include New Study Area

ENERGY TECH
Docking Adapter Sets Stage for Commercial Crew Crew

NASA selects leading-edge concepts for continued study

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

ENERGY TECH
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

ENERGY TECH
'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

ENERGY TECH
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

ENERGY TECH
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

ENERGY TECH
Ball delivers optical reference units for GRACE follow-on mission

'Pac-Man' space probe to gobble-up space debris

Silica spiky screws could boost industrial coatings, additive manufacturing

New conductive ink for electronic apparel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.