Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Can Astronomers Detect Exoplanet Oceans
by Ray Sanders
Moffett Field CA (SPX) Jul 13, 2012


Ten-year averaged map of planetary albedo for the simulation. Green lines indicate the coast of the equatorial continents blue lines show the annually averaged extent of sea-ice. The right panel shows the zonally (longitudinally) averaged albedo pro?le. Image Credit: Nicolas Cowan / Northwestern University.

Given the plethora of confirmed exoplanets, many researchers have turned their attention to studying these strange new worlds in greater detail. With several exoplanets thought to orbit in the "habitable zone" of their host star where liquid water might be stable, different methods of detecting surface water are under development. One such proposed method of detecting water oceans on an exoplanet is via specular refection, also known as "glint". If you've seen a bright reflection of sunlight on a lake or ocean here on Earth, you've seen an example of the glint effect.

Scientists posit that surface oceans of exoplanets would affect the planet's apparent reflectivity, also known as albedo. This increase of albedo should be detectable during the crescent phase of a planet.

In this model, astronomers don't need to see the entire "disk" of a planet, where the planet is reflecting light like a full Moon from our point of view. Instead, they can detect reflected starlight in a planet's gibbous phase, where we see only a part of the entire "full Moon" light. It is even possible to view an exoplanet in a crescent phase, where just a small sliver of reflected light is visible.

A Glint in the Eye
A team of scientists led by Nicolas Cowan of Northwestern University is examining the "glint" model for detecting exoplanets. Cowan and his team used a model of an Earth-like planet to simulate reflected light curves.

Cowan stresses the importance of a reliable method to detect oceans on exoplanets, stating: "Astronomers are keen to figure out how to detect oceans on exoplanets, because biologists assure us that liquid water is necessary for life as we know it. The challenge is that exoplanets are very far away, so at best they appear as Carl Sagan's proverbial 'pale blue dot'."

Despite their model not including specular refection, the team was able to obtain glint-like variations. Planets that have a modest tilt (or obliquity) receive less light at their poles than at their equator. The lower light levels would result in colder temperatures, allowing snow and ice to accumulate at the poles.

The team shows that at crescent phases, a modestly-tilted planet appears to reflect more light from higher latitudes (such as the poles) than when the planet is in a gibbous phase. Because snow and ice are so reflective, the apparent reflectivity of a planet will seem to increase if a planet is observed in a crescent phase. Cowan and his team assert that this "latitude-albedo effect" can be mistaken for the glint of oceans on exoplanets.

"The crux is that the light we see from a planet at crescent phase is hitting the planet at a glancing angle," adds Cohen. "What kinds of places receive glancing sunlight? You might be catching a region right at dusk or dawn, but more likely you are seeing a cold place, since glancing sunlight is precisely what makes a place cold. Low temperatures mean the surface is more likely to be covered in snow and ice. Since snow and ice are very reflective, the net effect is that the planet looks abnormally bright at crescent phases, regardless of whether it has oceans."

Seeking ExoOceans
In their paper, the team outlines three possible methods to detect surface liquid on an exoplanet. The first method, "rotational color variability," is based on the fact that oceans are darker and have different colors than other surface types on Earth. Over time, the variations in color of a spatially unresolved planet can betray the presence of liquid water oceans.

The second method relies on the alignment of the light waves being reflected (polarization). Oceans are smoother than other surface types and can align the light waves reflecting from the water's surface, thus polarizing the reflected light. Observations of polarized Earthshine suggest that variations in polarization may help astronomers detect oceans.

Lastly, specular refection states that oceans are able to reflect light in a manner similar to a mirror, especially at crescent phases.

"Water can do this because it is much smoother than land, trees or snow," says Cowen. "Even though the glint spot is small, it makes a planet look abnormally bright at crescent phase. Therefore, if you could keep track of a planet's brightness as it orbits its host star, you might be able to infer the presence of a glinting ocean."

The team noted previous research which showed that clouds and scattering of reflected light can mimic a glint signal at crescent phases. The team also noted that any method used to detect surface oceans on a planet would be hindered by atmospheric clouds. The three techniques previously listed have been shown to work with a high degree of confidence on Earth-Like planets with roughly 50% cloud cover.

In the team's letter, accepted for publication in the Astrophysical Journal (ApJ), the focus is on the specular reflection method. The research shows a tendency for planets in the habitable zone of their host star to have snow and ice in the regions least illuminated by sunlight, which naturally leads to a false positive for ocean glint, regardless of axial tilt.

Given the results of the simulations, Cowan and his team state that the latitude-albedo effect presents an interesting challenge to the detection of specular reflection (glint). The team asserts that in order to confirm a signal as an actual detection of liquid water, the albedo needs to increase at crescent phases, and be symmetrical at the waxing and waning phases.

In addition to the concerns with albedo increases, the team states one other critical variable is the planet's axial tilt, or obliquity - how far a planets "north" pole is tipped towards or away from observers on Earth.

Furthermore, based on the team's results, if no snow or ice is present on a planet, or if the surface is obscured by thick cloud cover, the latitude-albedo effect is thought to still apply if the coldest regions of the planet are mostly cloudy. The team stresses the previous scenario is present in their simulation, but may not be the case in general since the planet's position within the habitable zone may play a role in atmospheric conditions and surface temperatures.

Detecting ocean glint on Earth-like exoplanets may only be possible if the effects of clouds, snow and ice can be properly modeled. The team notes that "high contrast" imaging missions should be able to monitor the apparent albedo of rocky planets orbiting in the habitable zone of their parent star.

Based on the results of their simulations, the team asserts the latitude-albedo effect will limit attempts to interpret reflected light from terrestrial planets in the habitable zone of M-class dwarf stars.

Reference: "A false positive for ocean glint on exoplanets: The latitude-abedo effect."

.


Related Links
Astrobiology Roadmap Goal 1: Habitable planets
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
The Mysterious Case of the Disappearing Dust
Pasadena CA (JPL) Jul 10, 2012
Imagine if the rings of Saturn suddenly disappeared. Astronomers have witnessed the equivalent around a young sun-like star called TYC 8241 2652. Enormous amounts of dust known to circle the star are unexpectedly nowhere to be found. "It's like the classic magician's trick: now you see it, now you don't. Only in this case we're talking about enough dust to fill an inner solar system and it ... read more


EXO WORLDS
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

EXO WORLDS
NASA Mars images 'next best thing to being there'

Life's molecules could lie within reach of Mars Curiosity rover

Final Six-Member Crew Selected for Mars Food Mission

Opportunity Celebratres 3,000 Martian Days of Operation on the Surface of Mars!

EXO WORLDS
Nose Landing Gear Tested for Dream Chaser Spacecraft

Virgin Galactic Reveals Privately Funded Satellite Launcher and Confirms SpaceShipTwo Poised for Powered Flight

Branson to take kids on first space tourist trip

Space for dessert?

EXO WORLDS
Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

China set to launch bigger space program

EXO WORLDS
Science, Maintenance for Station Crew; Launch Preps for New Crew Members

ESA astronaut Andre Kuipers returns to Earth

First Annual ISS Research and Development Conference in Review

Three astronauts land on Earth from ISS in Russian capsule

EXO WORLDS
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

EXO WORLDS
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

EXO WORLDS
The eyes have it for disabled gamers

Raytheon to pursue USAF deployable air traffic radar program

Raytheon's MTS-B delivers leading-edge surveillance technology to USAF

The Day Information Went Global




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement