Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Calculations with Nanoscale Smart Particles
by Staff Writers
Moscow, Russia (SPX) Aug 21, 2014


Nanoparticles were coated with a special layer, which "disintegrated" in different ways when exposed to different combinations of signals. A signal here is the interaction of nanoparticles with a particular substance. For example, to implement the logical operation "AND" a spherical nanoparticle was coated with a layer of molecules, which held a layer of spheres of a smaller diameter around it.

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards creating medical nanorobots. They discovered a way of enabling nano- and microparticles to produce logical calculations using a variety of biochemical reactions.

Details of their research project are given in the journal Nature Nanotechnology. It is the first experimental publication by an exclusively Russian team in one of the most cited scientific magazines in many years.

The paper draws on the idea of computing using biomolecules. In electronic circuits, for instance, logical connectives use current or voltage (if there is voltage, the result is 1, if there is none, it's 0).In biochemical systems, the result can a given substance.

For example, modern bioengineering techniques allow for making a cell illuminate with different colors or even programming it to die, linking the initiation of apoptosis to the result of binary operations.

Many scientists believe logical operations inside cells or in artificial biomolecular systems to be a way of controlling biological processes and creating full-fledged micro-and nano-robots, which can, for example, deliver drugs on schedule to those tissues where they are needed.

Calculations using biomolecules inside cells, a.k.a. biocomputing, are a very promising and rapidly developing branch of science, according to the leading author of the study, Maxim Nikitin, a 2010 graduate of MIPT's Department of Biological and Medical Physics.

Biocomputing uses natural cellular mechanisms. It is far more difficult, however, to do calculations outside cells, where there are no natural structures that could help carry out calculations. The new study focuses specifically on extracellular biocomputing.

The study paves the way for a number of biomedical technologies and differs significantly from previous works in biocomputing, which focus on both the outside and inside of cells.

Scientists from across the globe have been researching binary operations in DNA, RNA and proteins for over a decade now, but Maxim Nikitin and his colleagues were the first to propose and experimentally confirm a method to transform almost any type of nanoparticle or microparticle into autonomous biocomputing structures that are capable of implementing a functionally complete set of Boolean logic gates (YES, NOT, AND and OR) and binding to a target (such as a cell) as result of a computation.

This method allows for selective binding to target cells, as well as it represents a new platform to analyze blood and other biological materials.

The prefix "nano" in this case is not a fad or a mere formality. A decrease in particle size sometimes leads to drastic changes in the physical and chemical properties of a substance. The smaller the size, the greater the reactivity; very small semiconductor particles, for example, may produce fluorescent light. The new research project used nanoparticles (i.e. particles of 100 nm) and microparticles (3000 nm or 3 micrometers).

Nanoparticles were coated with a special layer, which "disintegrated" in different ways when exposed to different combinations of signals. A signal here is the interaction of nanoparticles with a particular substance. For example, to implement the logical operation "AND" a spherical nanoparticle was coated with a layer of molecules, which held a layer of spheres of a smaller diameter around it.

The molecules holding the outer shell were of two types, each type reacting only to a particular signal; when in contact with two different substances small spheres separated from the surface of a nanoparticleof a larger diameter. Removing the outer layer exposed the active parts of the inner particle, and it was then able to interact with its target. Thus, the team obtained one signal in response to two signals.

For bonding nanoparticles, the researchers selected antibodies. This also distinguishes their project from a number of previous studies in biocomputing, which used DNA or RNA for logical operations. These natural proteins of the immune system have a small active region, which responds only to certain molecules; the body uses the high selectivity of antibodies to recognize and neutralize bacteria and other pathogens.

Making sure that the combination of different types of nanoparticles and antibodies makes it possible to implement various kinds of logical operations, the researchers showed that cancer cells can be specifically targeted as well.

The team obtained not simply nanoparticles that can bind to certain types of cells, but particles that look for target cells when both of two different conditions are met, or when two different molecules are present or absent. This additional control may come in handy for more accurate destruction of cancer cells with minimal impact on healthy tissues and organs.

Maxim Nikitin said that although this is just as mall step towards creating efficient nanobiorobots, this area of science is very interesting and opens up great vistas for further research, if one draws an analogy between the first works in the creation of nanobiocomputers and the creation of the first diodes and transistors, which resulted in the rapid development of electronic computers.

.


Related Links
Moscow Institute of Physics and Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Bacterial nanowires: Not what we thought they were
Los Angeles CA (SPX) Aug 21, 2014
For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety of solid surfaces. A team led by scientists at USC has turned the study of these bacterial nanowires on its head, discovering that the key features in question are not pili, as previou ... read more


NANO TECH
Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

August supermoon will be brightest this year

NANO TECH
Mars Rover Team Chooses Not to Drill 'Bonanza King'

Indian orbiter to reach Mars in 33 days

Mars thigh bone is really just a rock spotted by Curiosity

Curiosity's Brushwork on Martian 'Bonanza King' Target

NANO TECH
US to Stop Using Soyuz Spacecraft, Invest in Domestic Private Space Industry

Voyager Map Details Neptune's Strange Moon Triton

NASA Selects 26 Space Biology Research Proposals

Long-term spaceflights challenged as harm to astronauts' health revealed

NANO TECH
China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

NANO TECH
NASA Awaits Boeing's Completion of Soyuz Replacement

Belka and Strelka, the canine cosmonauts

Orbital cargo ship makes planned re-entry to Earth

The ISS just dumped 3,300 lbs of space trash to burn up in Earth's atmosphere

NANO TECH
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

NANO TECH
Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

NANO TECH
Russia to develop scavenger to collect cosmic debris by 2025

Paper offers insights into new class of semiconductors

Discovery suggests surprising uses for common bubbles

Artificial Cells Act Like the Real Thing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.