Subscribe free to our newsletters via your
. 24/7 Space News .




ICE WORLD
CU-Boulder study shows Greenland may be slip-sliding away due to surface lake melt
by Staff Writers
Boulder CO (SPX) Apr 18, 2012


This is a surface or "supraglacial" lake on the Greenland Ice Sheet. Credit: Konrad Steffen, University of Colorado.

Like snow sliding off a roof on a sunny day, the Greenland Ice Sheet may be sliding faster into the ocean due to massive releases of meltwater from surface lakes, according to a new study by the University of Colorado Boulder-based Cooperative Institute for Research in Environmental Sciences.

Such lake drainages may affect sea-level rise, with implications for coastal communities, according to the researchers. "This is the first evidence that Greenland's 'supraglacial' lakes have responded to recent increases in surface meltwater production by draining more frequently, as opposed to growing in size," says CIRES research associate William Colgan, who co-led the new study with CU-Boulder computer science doctoral student Yu-Li Liang.

During summer, meltwater pools into lakes on the ice sheet's surface. When the water pressure gets high enough, the ice fractures beneath the lake, forming a vertical drainpipe, and "a huge burst of water quickly pulses through to the bed of the ice sheet," Colgan said.

The researchers used satellite images along with innovative feature-recognition software to monitor nearly 1,000 lakes on a Connecticut-sized portion of the ice sheet over a 10-year period. They discovered that as the climate warms, such catastrophic lake drainages are increasing in frequency. Catastrophic lake drainages were 3.5 times more likely to occur during the warmest years than the coldest years.

During a typical catastrophic lake drainage, about 1 million cubic meters of meltwater - which is equivalent to the volume of about 4,000 Olympic swimming pools - funnels to the ice sheet's underside within a day or two. Once the water reaches the ice sheet's belly that abuts underlying rock, it may turn the ice-bed surface into a Slip 'N Slide, lubricating the ice sheet's glide into the ocean. This would accelerate the sea-level rise associated with climate change.

Alternatively, however, the lake drainages may carve out sub-glacial "sewers" to efficiently route water to the ocean. "This would drain the ice sheet's water, making less water available for ice-sheet sliding," Colgan said. That would slow the ice sheet's migration into the ocean and decelerate sea-level rise.

"Lake drainages are a wild card in terms of whether they enhance or decrease the ice sheet's slide," Colgan said. Finding out which scenario is correct is a pressing question for climate models and for communities preparing for sea-level change, he said.

For the study, the researchers developed new feature-recognition software capable of identifying supraglacial lakes in satellite images and determining their size and when they appear and disappear. "Previously, much of this had to be double-checked manually," Colgan said. "Now we feed the images into the code, and the program can recognize whether a feature is a lake or not, with high confidence and no manual intervention."

Automating the process was vital since the study looked at more than 9,000 images. The researchers verified the program's accuracy by manually looking at about 30 percent of the images over 30 percent of the study area. They found that the algorithm - a step-by-step procedure for calculations - correctly detected and tracked 99 percent of supraglacial lakes.

The program could be useful in future studies to determine how lake drainages affect sea-level rise, according to the researchers. CIRES co-authors on the team include Konrad Steffen, Waleed Abdalati, Julienne Stroeve and Nicolas Bayou. The study is being published online by the journal Remote Sensing of the Environment. The study was funded by the Arctic Sciences Program of the National Science Foundation.

.


Related Links
University of Colorado at Boulder
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ICE WORLD
No ice loss seen in major Himalayan glaciers: scientists
Paris (AFP) April 15, 2012
One of the world's biggest glacier regions has so far resisted global warming that has ravaged mountain ice elsewhere, scientists reported on Sunday. For years, experts have debated the state of glaciers that smother nearly 20,000 square kilometres (7,700 sq. miles) of the Karakoram range in the western Himalayas. Straddling parts of China, Pakistan and India, the Karakoram's peaks inclu ... read more


ICE WORLD
Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

Russia Plans to Launch Lunar Rovers to Moon after 2020

Russia to explore moon

ICE WORLD
Photo Of NASA's Maven Spacecraft and Propellant Tank at Lockheed Martin

Dark regions on Mars may be volcanic glass

Martian impact craters may be hiding life

Russia to Go Back to the Moon Before Reaching for Mars

ICE WORLD
Voyager One Might Have Farther to Go to Exit the Heliosheath

Manned space missions: from the ISS to outer space

NASA's Human Spaceflight Programs: From Space Shuttle To The Future

Commentary: Innovate or evaporate

ICE WORLD
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

ICE WORLD
Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

Busy first days for ATV Edoardo Amaldi

ICE WORLD
A double arrival for Arianespace's next dual-payload Ariane 5 mission

Another weather satellite payload is readied for launch by Arianespace

Canadarm2 to Catch SpaceX's Dragon on Its Maiden Voyage to the ISS

How to Buy a Launch Vehicle

ICE WORLD
ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

Study On Extrasolar Planet Orbits Suggests That Solar System Structure Is The Norm

ICE WORLD
New Technique Helps Ensure Reliability of Microelectronic Devices, PV Cells and MEMS Applications

Topological Transitions In Metamaterials

Raytheon Delivers US Navy's First Dual-Frequency Sonar

More 'mini-iPad' rumors surface




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement