Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
CODITA: measuring the cosmic dust swept up by the Earth
by Staff Writers
Manchester, UK (SPX) Apr 05, 2012


A glorious starry sky, with a bright column due to zodiacal light, illuminates the desert landscape around Cerro Paranal, home to ESO's Very Large Telescope (VLT). Credit: ESO/Y.Beletsky.

CODITA has received a EUR 2.5 million grant from the European Research Council to investigate the dust input over the next 5 years. The international team, led by Professor Plane, is made up of 11 scientists in Leeds and a further 10 research groups in the US and Germany.

The main sources of dust in the Solar system are collisions between asteroids and material evaporating off comets as they approach the Sun. When dust particles approach the Earth they enter the atmosphere at very high speeds, anything from 38 000 to 248 000 kilometres an hour, depending on whether they are orbiting in the same direction or the opposite to the Earth's motion around the Sun.

The particles undergo very rapid heating through collisions with air molecules, reaching temperatures well in excess of 1600 degrees Celsius. At this point they melt and evaporate. Particles with diameters greater than about 2 millimetres give off enough material to produce visible meteors, or "shooting stars".

But most of the mass of dust particles entering the atmosphere are much smaller than this, so can be detected only using specialised meteor radars.

"We have a conundrum - estimates of how much dust comes in vary by a factor of a hundred," said Plane. "The aim of CODITA is to resolve this huge discrepancy."

Satellite observations suggest that 100-300 tonnes of cosmic dust enter the atmosphere each day. This figure tallies with the rate of accumulation in polar ice cores and deep-sea sediments of rare elements linked to cosmic dust, such as iridium and osmium. However, measurements in the earth's atmosphere indicate that the input could be as low as 5 tonnes per day.

These measurements include meteor radar observations, laser observations of the sodium and iron atoms from evaporating dust in the upper atmosphere, and measurements by high altitude aircraft of meteoritic iron in the lower stratosphere.

"If the dust input is around 200 tons per day, then the particles are being transported down through the middle atmosphere considerably faster than generally believed; if the 5-tonne figure is correct, we will need to revise substantially our understanding of how dust evolves in the Solar System and is transported from the middle atmosphere to the surface," said Plane.

The metals injected into the atmosphere from evaporating dust particles are involved in a diverse range of phenomena linked to climate change.

"Cosmic dust is associated with the formation of 'noctilucent' clouds - the highest clouds in the Earth's atmosphere. The dust particles provide a surface for the cloud's ice crystals to form.

These clouds develop during summer in the polar regions and they appear to be an indicator of climate change,' said Plane. "The metals from the dust also affect ozone chemistry in the stratosphere. The amount of dust present will be important for any geo-engineering initiatives to increase sulphate aerosol to offset global warming. Cosmic dust also fertilises the ocean with iron, which has potential climate feedbacks because marine phytoplankton emit climate-related gases."

The CODITA team will also use laboratory facilities to tackle some of the least well-understood aspects of the problem

Plane explained, "In the lab, we'll be looking at the nature of cosmic dust evaporation, as well as the formation of meteoric smoke particles, which play a role in ice nucleation and the freezing of polar stratospheric clouds. The results will be incorporated into a chemistry-climate model of the whole atmosphere. This will make it possible, for the first time, to model the effects of cosmic dust consistently from the outer Solar System to the Earth's surface."

.


Related Links
Royal Astronomical Society
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Comet Wild2: First Evidence of Space Weathering
Manchester, UK (SPX) Apr 03, 2012
The traditional picture of comets as cold, icy, unchanging bodies throughout their history is being reappraised in the light of analyses of dust grains from Comet Wild2. A team led by the University of Leicester has detected the presence of iron in a dust grain, evidence of space weathering that could explain the rusty reddish colour of Wild2's outer surface. The results were presented by ... read more


IRON AND ICE
Earth's Other Moons

Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

IRON AND ICE
Mars missions race, India takes lead

12-Mile-High Martian Dust Devil Caught In Act

The sounds of Mars and Venus are revealed for the first time

Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

IRON AND ICE
'Smart City' ambitions for quake-struck Italian town

Boeing Completes Parachute Drop Test of Crew Space Transportation Spacecraft

New Study Calls For Recognition of Private Property Claims in Space

Conservatives' trust in science has fallen dramatically since mid-1970s

IRON AND ICE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

IRON AND ICE
Busy first days for ATV Edoardo Amaldi

Space Savings for ISS Science Samples

Europe's ATV-3 Space Freighter Adjusts ISS Orbit

Aerojet Propulsion Helps Deliver Astronaut Care Packages

IRON AND ICE
Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

IRON AND ICE
NASA's Kepler Mission Awarded Mission Extension

A planetary system from the early Universe

Discovery of an 'alien earth' imminent?

Getting to Know the Goldilocks Planet

IRON AND ICE
Court revives Viacom copyright suit against YouTube

Google gives glimpse of Internet glasses

Handover of Japan-built Radar to NASA

New understanding of how materials change when rapidly heated




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement