Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CHIP TECH
Building a biochemistry lab on a chip
by Rick Kubetz
Urbana IL (SPX) Feb 15, 2013


Cross-section of device with a droplet. The left side shows an unheated droplet with the DNA FRET construct in the double-stranded form. The right side shows a heated droplet where the FRET construct has denatured, resulting in an increase in fluorescence.

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Using micro-fabrication techniques and incorporating a unique design of transistor-based heating, researchers at the University of Illinois at Urbana-Champaign are further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

Lab-on-a-chip technologies are attractive as they require fewer reagents, have lower detection limits, allow for parallel analyses, and can have a smaller footprint.

"Integration of various laboratory functions onto microchips has been intensely studied for many years," explained Rashid Bashir, an Abel Bliss Professor of electrical and computer engineering and of bioengineering at Illinois.

"Further advances of these technologies require the ability to integrate additional elements, such as the miniaturized heating element, and the ability to integrate heating elements in a massively parallel format compatible with silicon technology.

"In this work, we demonstrated that we can heat nanoliter volume droplets, individually and in an array, using VLSI silicon based devices, up to temperatures that make it interesting to do various biochemical reactions within these droplets."

"Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches," said Eric Salm, first author of the paper, "Ultralocalized thermal reactions in subnanoliter droplets-in-air," published in the Proceedings of the National Academy of Science (PNAS) on February 12.

According to Salm, approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space multiplex reactions on a single integrated circuit.

Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products.

"This technology makes it possible to do cell lysing and nucleic acid amplification reactions within these individual droplets - the droplets are the reaction vessels or cuvettes that can be individually heated," Salm added.

"We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection," said Bashir, who is director of the Micro and Nanotechnology Laboratory at Illinois.

"This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules.

"Notably," Bashir added, "our miniaturized heater could also function as dual heater/sensor elements, as these silicon-on-insulator nanowire or nanoribbon structures have been used to detect DNA, proteins, pH, and pyrophosphates.

By using microfabrication techniques and incorporating the unique design of transistor-based heating with individual reaction volumes, 'laboratory-on-a-chip' technologies can be scaled down to 'laboratory-on-a-transistor' technologies as sensor/heater hybrids that could be used for point-of-care diagnostics."

In addition to Salm and Bashir, co-authors of the study included Carlos Duarte Guevara, Piyush Dak, Brian Ross Dorvel, and Bobby Reddy, Jr. at the University of Illinois; and Muhammad Ashraf Alam, Birck Nanotechnology Center and the School of Electrical and Computer Engineering at Purdue University.

.


Related Links
Engineering at Illinois
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Cell circuits remember their history
Boston MA (SPX) Feb 15, 2013
MIT engineers have created genetic circuits in bacterial cells that not only perform logic functions, but also remember the results, which are encoded in the cell's DNA and passed on for dozens of generations. The circuits, described in the Feb. 10 online edition of Nature Biotechnology, could be used as long-term environmental sensors, efficient controls for biomanufacturing, or to progra ... read more


CHIP TECH
Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

CHIP TECH
Rover Walkabout Continues at Cape York

Mars Rock Takes Unusual Form

In milestone, Mars rover collects first bedrock sample

How The World's Saltiest Pond Gets Its Salt; Implications For Water On Mars

CHIP TECH
Orion Lands Safely on Two of Three Parachutes in Test

Supersonic skydiver even faster than thought

Ahmadinejad says ready to be Iran's first spaceman

Iran's Bio-Capsule Comes Back from Space

CHIP TECH
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

CHIP TECH
Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

Progress docks with ISS

NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

CHIP TECH
Another Sea Launch Failure

ILS Concludes Yamal 402 Proton Launch Investigation

Ariane 5 delivers record payload off back-to-back launches this week

Eutelsat and Arianespace sign new multi-year multiple launch services agreement

CHIP TECH
Earth-like planets are right next door

Direct Infrared Image Of An Arm In Disk Demonstrates Transition To Planet Formation

Kepler Data Suggest Earth-size Planets May Be Next Door

Earth-like planets may be closer than thought: study

CHIP TECH
Researchers strain to improve electrical material and it's worth it

Explosive breakthrough in research on molecular recognition

Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement