Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Brown researchers build robotic bat wing
by Staff Writers
Providence RI (SPX) Feb 26, 2013


A robotic bat wing lets researchers measure forces, joint movements, and flight parameters - and learn more about how the real thing operates in nature. Credit: Breuer and Swartz labs/Brown University.

Researchers at Brown University have developed a robotic bat wing that is providing valuable new information about dynamics of flapping flight in real bats.

The robot, which mimics the wing shape and motion of the lesser dog-faced fruit bat, is designed to flap while attached to a force transducer in a wind tunnel. As the lifelike wing flaps, the force transducer records the aerodynamic forces generated by the moving wing. By measuring the power output of the three servo motors that control the robot's seven movable joints, researchers can evaluate the energy required to execute wing movements.

Testing showed the robot can match the basic flight parameters of bats, producing enough thrust to overcome drag and enough lift to carry the weight of the model species. A paper describing the robot and presenting results from preliminary experiments is published in the journal Bioinspiration and Biomimetics. The work was done in labs of Brown professors Kenneth Breuer and Sharon Swartz, who are the senior authors on the paper. Breuer, an engineer, and Swartz, a biologist, have studied bat flight and anatomy for years.

The faux flapper generates data that could never be collected directly from live animals, said Joseph Bahlman, a graduate student at Brown who led the project. Bats can't fly when connected to instruments that record aerodynamic forces directly, so that isn't an option - and bats don't take requests.

"We can't ask a bat to flap at a frequency of eight hertz then raise it to nine hertz so we can see what difference that makes," Bahlman said. "They don't really cooperate that way."

But the model does exactly what the researchers want it to do. They can control each of its movement capabilities - kinematic parameters - individually. That way they can adjust one parameter while keeping the rest constant to isolate the effects.

"We can answer questions like, 'Does increasing wing beat frequency improve lift and what's the energetic cost of doing that?'" Bahlman said. "We can directly measure the relationship between these kinematic parameters, aerodynamic forces, and energetics."

Detailed experimental results from the robot will be described in future research papers, but this first paper includes some preliminary results from a few case studies.

One experiment looked at the aerodynamic effects of wing folding. Bats and some birds fold their wings back during the upstroke. Previous research from Brown had found that folding helped the bats save energy, but how folding affected aerodynamic forces wasn't clear. Testing with the robot wing shows that folding is all about lift.

In a flapping animal, positive lift is generated by the downstroke, but some of that lift is undone by the subsequent upstroke, which generates negative lift. By running trials with and without wing folding, the robot showed that folding the wing on the upstroke dramatically decreases that negative lift, increasing net lift by 50 percent.

Data like that will not only give new insights into the mechanics of bat flight, it could aid the design of small flapping aircraft. The research was funded by the U.S. Air Force Office of Scientific Research and the National Science Foundation..

Inspired by the real thing
Bat wings are complex things. They span most of the length of a bat's body, from shoulder to foot. They are supported and moved by two arm bones and five finger-like digits. Over those bones is a super-elastic skin that can stretch up to 400 percent without tearing. The eight-inch robot mimics that anatomy with plastic bones carefully fabricated on a 3-D printer to match proportions of a real bat. The skin is made of a silicone elastomer. The joints are actuated by servo motors that pull on tendon-like cables, which in turn pull on the joints.

The robot doesn't quite match the complexity of a real bat's wing, which has 25 joints and 34 degrees of freedom. An exact simulation isn't feasible given today's technology and wouldn't be desirable anyway, Bahlman said. Part of why the model is useful is that it distills bat flapping down to five fundamental parameters: flapping frequency, flapping amplitude, the angle of the flap relative to the ground, the amount of time used for the downstroke, and the extent to which the wings can fold back.

Experimental data aside, Bahlman said there were many lessons learned just in building the robot and getting it to work properly. "We learned a lot about how bats work from trying to duplicate them and having things go wrong," he said.

During testing, for example, the tongue and groove joint used for the robot's elbow broke repeatedly. The forces on the wing would spread open the groove, and eventually break it open. Bahlman eventually wrapped steel cable around the joint to keep it intact, similar to the way ligaments hold joints together in real animals.

The fact that the elbow was a characteristic weak point in the robot might help to explain the musculature of elbows in real bats. Bats have a large set of muscles at the elbow that are not positioned to flex the joint. In humans, these muscles are used in the motion that helps us turn our palms up or down. Bats can't make that motion, however, so the fact that these muscles are so large was something of a mystery. Bahlman's experience with the robot suggests these muscles may be adapted to resist bending in a direction that would break the joint open.

The wing membrane provided more lessons. It often tore at the leading edge, prompting Bahlman to reinforce that spot with elastic threads. The fix ended up looking a lot like the tendon and muscle that reinforce leading edges in bats, underscoring how important those structures are.

Now that the model is operational, Bahlman has lots of plans for it.

"The next step is to start playing with the materials," he said. "We'd like to try different wing materials, different amounts of flexibility on the bones, looking to see if there are beneficial tradeoffs in these material properties."

A paper describing the robot and presenting results from preliminary experiments is published in the journal Bioinspiration and Biomimetics. The work was done in labs of Brown professors Kenneth Breuer and Sharon Swartz, who are the senior authors on the paper. Breuer, an engineer, and Swartz, a biologist, have studied bat flight and anatomy for years.

.


Related Links
Brown University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Lessons from cockroaches could inform robotics
Ann Arbor MI (SPX) Feb 26, 2013
Running cockroaches start to recover from being shoved sideways before their dawdling nervous system kicks in to tell their legs what to do, researchers have found. These new insights on how biological systems stabilize could one day help engineers design steadier robots and improve doctors' understanding of human gait abnormalities. In experiments, the roaches were able to maintain their ... read more


ROBO SPACE
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

ROBO SPACE
Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Big Nickel Rock Target Ahead

NASA Rover Confirms First Drilled Mars Rock Sample

ROBO SPACE
U.S. research to be free online

NASA Creates Space Technology Mission Directorate

Educator Teams Fly On NASA Sofia Airborne Observatory

Choreographed to Perfection

ROBO SPACE
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

ROBO SPACE
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

ROBO SPACE
The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

India's 102nd space mission lifts off successfully

ROBO SPACE
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

ROBO SPACE
China overtakes Japan on IT spending: German trade body

Tokyo hotel shrinks in new-style urban demolition

Fluids in Space, Shaken Not Stirred

The world's most sensitive plasmon resonance sensor inspired by ancient Roman cup




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement