Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Breathing Through the Eyes
by Staff Writers
Moffett Field CA (SPX) Jun 28, 2011


illustration only

Say what you will about bird brains, but our feathered friends sure have us - and all the other animals on the planet - beat in the vision department, and that has a bit to do with how their brains develop.

Consider the in-flight feats of birds of prey: They must spot their dinner from long distances and dive-bomb those moving targets at lightning speed. And then there are the owls, which operate nimbly on even the darkest nights to secure supper in swift swoops. Some birds have ultraviolet sensitivity; others have infrared sensitivity. To boot, some birds can even see the Earth's magnetic field.

Much of the credit for avian visual acuity goes to the extraordinary retina, which grows out of the brain during development, making it an official component of the central nervous system. Indeed, the avian retina is far more complex in structure and composition than the human retina, and it contains many more photoreceptors - rod- and cone-shaped cells that detect light and color, respectively.

While researchers over the years have come to better understand much about the avian retina, many nagging questions remain. For Thorsten Burmester's research team at the University of Hamburg, the question was this: How does such a productive retina sustain itself when the avian eye has very few capillaries to deliver oxygen to it? After all, it has to "breathe," so to speak.

"The visual process in the vertebrate eye requires high amounts of metabolic energy and thus oxygen," Burmester's group writes in this week's Journal of Biological Chemistry. "Oxygen supply of the avian retina is a challenging task because birds have large eyes, thick retinas and high metabolic rates, but neither deep retinal nor superficial capillaries."

To answer the question, Burmester's team took a closer look at a protein that they discovered exists in large quantities in photoreceptor cells of the avian eye - and only of the avian eye. They named the protein globin E. (The "E" is short for "eye," of course.)

Burmester's team used a number of techniques to characterize globin E and found that it is responsible for storing and delivering oxygen to the retina.

The finding is intriguing for a number of reasons.

Firstly, it helps explain how birds evolved to have such large eyes, relative to their body mass, without a dense network of ocular capillaries for blood delivery. (Some owls, for instance, have bigger eyes than humans.)

"The exact origin of globin E is still somewhat a mystery," Burmester said. "It clearly evolved from some type of globin, but it has no obvious relative outside the birds."

The globins are all thought to share a common ancestor, and the most well-known members of the family are myoglobin and hemoglobin. Myoglobin is responsible for oxygen storage and release in heart and skeletal muscle fibers. Hemoglobin, meanwhile, transports oxygen from the lungs to other parts of the body in red blood cells.

Burmester explains: "Bird eyes have evolved to have a system not unlike those in our heart, which uses myoglobin to store and release oxygen to maintain respiration and energy-consumption during muscle contraction. In eyes, oxygen and energy are needed to generate neuronal signals."

Secondly, the finding puts to rest an earlier hypothesis that another molecule, neuroglobin, might be the oxygen-delivery vehicle for the avian eye. Neuroglobin is known to deliver oxygen to brain tissue, so it was only natural to suspect it. But it turns out that the messenger RNA fingerprint of globin E was 100-fold more prevalent than that of neuroglobin in Burmester's chicken retina samples, indicating that neuroglobin probably has another, yet-to-be defined function in the avian eye.

Lastly, globin E is another interesting illustration of the convergent evolution of "myoglobin-like" molecules. Among the organisms with proteins with similar functions are the soybean, which needs its leghemoglobin to deliver oxygen to the Rhizobium soil bacteria that colonize in root nodules, and the 2-foot-long sea worm Cerebratulus lacteus, which needs its mini-hemoglobin to keep its brain and neurons oxygenated when it burrows deep into the sea floor, where oxygen levels are low, in search of clams.

.


Related Links
American Society for Biochemistry and Molecular Biology
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
Penn State expert determined to find life on Earth-like planets
University Park PA (SPX) Jun 17, 2011
Thanks to popular Hollywood films like "E.T.," "Avatar" and "Super 8," life on other planets seems highly conceivable to people who have considered the idea that we are not alone in the universe. Jim Kasting, distinguished professor of geosciences in Penn State's College of Earth and Mineral Sciences and an expert in atmospheric evolution, is one person who considers it a lot. As a kid gro ... read more


EXO LIFE
ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

CMU and Astrobotic Technology Complete Structural Assembly of Lunar Lander

Blood Red Moon Predicted

EXO LIFE
Opportunity Getting Closer to Endeavour Crater

NASA Mars Rover Arrives in Florida After Cross-Country Flight

Radar for Mars Gets Flight Tests at NASA Dryden

19-Mile Mark See Opportunity For A Solar Panel Clean Up

EXO LIFE
Sierra Nevada Space Systems Completes Milestones For Commercial Crew Program

Unfasten your seatbelts aboard the ZERO-G

ESA reentry vehicle on track for flight in 2013

Space shuttle commander Kelly to retire from NASA

EXO LIFE
China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

EXO LIFE
Space junk narrowly misses station

Improving Slumber on the Space Station With Sleep-Long

ATV-2: re-entry over the south Pacific

Progress M-11M space freighter launched into orbit

EXO LIFE
Parallel Ariane 5 launch campaigns keep up Arianespace's 2011 mission pace

Ariane 5 payload integration underway; First Soyuz launchers arrive

Arianespace to launch Astra 5B satellite

Arianespace receives the next Ariane 5 for launch in 2011

EXO LIFE
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

EXO LIFE
Debris narrowly misses International Space Station

Space debris a growing problem

Scientists a step closer to understanding 'natural antifreeze' molecules

Electron Beam Freeform Fabrication




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement