Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Breakthrough research produces brighter, more efficiently produced lighting
by Staff Writers
Santa Barbara CA (SPX) Nov 04, 2013


This illustration demonstrates how bright blue LED light, shone through its complementary yellow phosphor, yields white light. Credit: UCSB.

By determining simple guidelines, researchers at UC Santa Barbara's Solid State Lighting and Energy Center (SSLEC) have made it possible to optimize phosphors -- a key component in white LED lighting -- allowing for brighter, more efficient lights.

"These guidelines should permit the discovery of new and improved phosphors in a rational rather than trial-and-error manner," said Ram Seshadri, a professor in the university's Department of Materials as well as in its Department of Chemistry and Biochemistry, of the breakthrough contribution to solid-state lighting research. T

he results of this research, performed jointly with materials professor Steven DenBaars and postdoctoral associate researcher Jakoah Brgoch, appear in The Journal of Physical Chemistry.

LED (light-emitting diode) lighting has been a major topic of research due to the many benefits it offers over traditional incandescent or fluorescent lighting. LEDs use less energy, emit less heat, last longer and are less hazardous to the environment than traditional lighting.

Already utilized in devices such as street lighting and televisions, LED technology is becoming more popular as it becomes more versatile and brighter.

According to Seshadri, all of the recent advances in solid-state lighting have come from devices based on gallium nitride LEDs, a technology that is largely credited to UCSB materials professor Shuji Nakamura, who invented the first high-brightness blue LED.

In solid-state white lighting technology, phosphors are applied to the LED chip in such a way that the photons from the blue gallium nitride LED pass through the phosphor, which converts and mixes the blue light into the green-yellow-orange range of light. When combined evenly with the blue, the green-yellow-orange light yields white light.

The notion of multiple colors creating white may seem counterintuitive. With reflective pigments, mixing blue and yellow yields green; however, with emissive light, mixing such complementary colors yields white.

Art to science
Until recently, the preparation of phosphor materials was more an art than a science, based on finding crystal structures that act as hosts to activator ions, which convert the higher-energy blue light to lower-energy yellow/orange light.

"So far, there has been no complete understanding of what make some phosphors efficient and others not," Seshadri said. "In the wrong hosts, some of the photons are wasted as heat, and an important question is: How do we select the right hosts?"

As LEDs become brighter, for example a they are used in vehicle front lights, they also tend to get warmer, and, inevitably, this impacts phosphor properties adversely.

"Very few phosphor materials retain their efficiency at elevated temperatures," Brgoch said. "There is little understanding of how to choose the host structure for a given activator ion such that the phosphor is efficient, and such that the phosphor efficiency is retained at elevated temperatures."

However, using calculations based on density functional theory, which was developed by UCSB professor and 1998 Nobel Laureate Walter Kohn, the researchers have determined that the rigidity of the crystalline host structure is a key factor in the efficiency of phosphors: The better phosphors possess a highly rigid structure.

Furthermore, indicators of structural rigidity can be computed using density functional theory, allowing materials to be screened before they are prepared and tested.

This breakthrough puts efforts for high-efficiency, high-brightness, solid-state lighting on a fast track. Lower-efficiency incandescent and fluorescent bulbs -- which use relatively more energy to produce light -- could become antiquated fixtures of the past.

"Our target is to get to 90 percent efficiency, or 300 lumens per watt," said DenBaars, who also is a professor of electrical and computer engineering and co-director of the SSLEC. Current incandescent light bulbs, by comparison, are at roughly 5 percent efficiency, and fluorescent lamps are a little more efficient at about 20 percent.

"We have already demonstrated up to 60 percent efficiency in lab demos," DenBaars said.

.


Related Links
University of California - Santa Barbara
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Urban Underground Holds Sustainable Energy
Karlsruhe, Germany (SPX) Nov 06, 2013
Vast energy sources are slumbering below big cities. Sustainable energies for heating in winter and cooling in summer may be extracted from heated groundwater aquifers. Researchers from KIT and ETH Zurich developed an analytical heat flux model and found that increasing heat in the underground is mainly caused by an increase in surface temperatures and heat release from buildings. Work of ... read more


ENERGY TECH
Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

ENERGY TECH
India reaches for Mars on prestige space mission

India mission to Mars blasts off successfully

Mars Mission: India's Tryst with the Red Planet

Martian box of delights

ENERGY TECH
From North Pole to the stars: Russia's thrill-seeking tycoon

A look at recent tech sector IPOs

NASA's Orion Spacecraft Comes to Life

Flights of Fancy

ENERGY TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

ENERGY TECH
Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

Mission accomplished for Europe's cargo freighter

Soyuz changes parking spots at space station, making way for new crew

ENERGY TECH
Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ILS Proton Launches Sirius FM-6 Satellite

ENERGY TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

ENERGY TECH
Breakthrough in study of aluminum should yield new technological advances

Gravity and the robot satellite attitude problem

Global IT spending set to recover in 2014

Plasmonic crystal alters to match light-frequency source




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement