Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Breakthrough for information technology using Heusler materials
by Staff Writers
Mainz, Germany (SPX) Jun 16, 2014


Diagram illustrating the principle of spin-resolved photoemission spectroscopy of thin Heusler films. Image courtesy Martin Jourdan. For a larger version of this image please go here.

It is the breakthrough that physicists and chemists around the world have long anticipated and it will play a pivotal role in information technology in coming years. Researchers at Johannes Gutenberg University Mainz (JGU) have managed, for the first time, to directly observe the 100 percent spin polarization of a Heusler compound.

Heusler alloys are composed of several metallic elements arranged in a lattice structure. They are among those materials that potentially can be used for ever smaller data storage components with ever greater storage capacity. However, doubts have been recently expressed as to whether Heusler materials are actually suitable for this purpose.

The physicists at Mainz University have now demonstrated that the Heusler compound Co2MnSi has the necessary electronic properties. The project was conducted in collaboration with theoretical physicists and chemists at the Ludwig-Maximilians-Universitat (LMU) Munchen and the Max Planck Institute for Chemical Physics of Solids (MPI-CPfS) in Dresden. The results have recently been published in the online scientific journal Nature Communications.

The findings provide the cornerstone for the future development of high-performance spintronic devices using Heusler materials. The potential applications include hard disk reader heads and non-volatile storage elements.

Electrons act as charge carriers in metals and semi-conductors. However, they not only have a charge that is relevant in conventional electronics but also a magnetic moment, the spin, which can be thought of as originating from a rotation of the electron around its own axis.

Spin-based electronics, or spintronics, is widely seen as an integral part of information technology of the future, but innovative materials are required if this concept is to be appropriately realized. Potential applications are, for example, hard disk drive read heads and non-volatile magnetic memory.

One decisive parameter in this connection is the spin polarization, i.e., the degree of parallel orientation of the spins of the electrons that transport the charge. The ideal material will have the maximum possible spin polarization, i.e., the spins of the maximum number of current carrying electrons point in the same direction.

The Mainz physicists have been able to produce the first experimental proof of almost complete spin polarization at room temperature in the metallic Heusler alloy Co2MnSi.

"This class of materials has long been under investigation and there is substantial theoretical evidence for the required electronic properties of Heusler compounds but no single experiment has previously been able to confirm 100 percent spin polarization at room temperature," explained PD Dr. Martin Jourdan of JGU, the primary author of the study.

"Encouraging results had already been obtained at very low temperatures of -269 degree Celsius. Crucial for potential applications of the compound Co2MnSi, consisting of cobalt, manganese, and silicon, is an additional aspect of the experimental findings made by the scientists: They observed the high spin polarization at the material's surface.

Professor Claudia Felser, who established the field of research into half-metallic Heusler materials 15 years ago, sees the results of the study as a long-awaited breakthrough.

"Direct experimental evidence of 100 percent spin polarization has finally been found", said Felser, Director of the Max Planck Institute for Chemical Physics of Solids in Dresden. "This represents a major step forward when it comes to the development of new spintronic devices."

The successful experiments were based on the preparation of samples with extreme precision. For this the crystalline structure of the Heusler compound had to be perfectly ordered, in particular at the material's surface, which was realized in Mainz by means of thin-film preparation in ultra-high vacuum.

The spin polarization was then measured using photo electron spectroscopy and could be explained in collaboration with the theoreticians at LMU and the MPI-CPfS as the result of a special combination of bulk and surface properties of the compound.

"It is not merely a breakthrough in the search for new spintronic materials but also in the interplay between theory and experiment," remarked Jourdan. "We were able to show that perfectly prepared materials actually have the properties that have been theoretically predicted."

Heusler materials are being researched globally, particularly in Japan, Germany, and the USA. At JGU they are the subject of a core research unit that is part of the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) and the Center for Innovative and Emerging Materials (CINEMA).

The LMU physicochemists PD Dr. Jan Minar, Professor Jurgen Braun, and Professor Hubert Ebert provided the theoretical framework for this study. "The spectroscopic calculations were carried out using a so-called one-step model," explained Minar, a member of Ebert's team that developed the theoretical program.

"Such a combination of electronic structure and theoretical photoemission calculations made direct comparison with the corresponding experimental data possible, which in turn was essential to interpreting the 100 percent spin polarization that was measured."

.


Related Links
Johannes Gutenberg University Mainz
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
The Inflatable Concrete Dome
Vienna, Austria (SPX) Jun 13, 2014
When concrete shells are constructed, they usually have to be supported by elaborate timber structures. A revolutionary technique developed at the Vienna University of Technology now uses inflatable air cushions instead. Large shell structures made of concrete or stone are hardly ever built any more. The reason is that their construction requires large, expensive supporting structures. At ... read more


TECH SPACE
Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

TECH SPACE
Discovery of Earth's Northernmost Perennial Spring

US Congress and Obama administration face obstacles in Mars 2030 project

Opportunity Recovering From Flash Memory Problems

Rover Corrects its Spacecraft Clock

TECH SPACE
Coffee for cosmonauts! First 'ISSpresso' machine to arrive in space

Complexity of Sample Return Robot Competition Challenges 17 Teams

Wealthy Chinese buy space flight tickets: report

Boeing reveals prototype spacecraft for human transport

TECH SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TECH SPACE
US expects to continue partnership with Russia on ISS after 2020

Station Crew Wraps Up Week With Medical Research

Decontamination System to Up Research on Space Station

D-Day for the International Space Station

TECH SPACE
Nasa readies satellite to measure atmospheric CO2

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

US not able yet to remove dependency on Russian rocket motors

TECH SPACE
Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

First light for SPHERE exoplanet imager

TECH SPACE
NASA's abandoned ISEE-3 craft to return to Earth's orbit

Breakthrough for information technology using Heusler materials

PlayStation lets Sony grab for home entertainment crown

3D printer cleared for lift-off to ISS in August




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.