Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Black hole more massive than imagined: study
by Staff Writers
Washington (AFP) June 9, 2009


A pair of pioneering astronomers revealed Tuesday how they used a supercomputer to show that a nearby black hole is vastly more massive than scientists ever imagined.

The black hole at the heart of the relatively close Messier 87 Galaxy (M87) weighs in at 6.4 billion times the mass of our Sun, according to US astrophysicist Karl Gebhardt and Germany's Jens Thomas, who say it's the largest ever measured with a reliable technique.

One of the more enigmatic features of astronomy, a black hole is a region in space that is inferred by tracking stars that orbit it. Objects fall into its stupendous gravitational field but nothing, not even light, can return.

Gebhardt and Thomas' revelation, they say, sheds light on how galaxies grow, and may solve the paradox of quasars -- active black holes guzzling matter in distant galaxies that scientists are struggling to understand.

Addressing the American Astronomical Society conference in Pasadena, California, the stargazers described how they employed the gargantuan computing power of the Lonestar system, also known as the huge "Texas Advanced Computing Center" at the University of Texas.

The Lonestar has 5,840 processing cores and can perform 62 trillion "floating-point operations" per second. For comparison, the most state-of-the-art laptop computer has only two processing cores and performs only 10 billion such operations per second.

Gebhardt and Thomas's study, to be published later this year in the Astrophysical Journal, aims to clock the mass of Galaxy M87's central black hole by also modeling the galaxy's "dark halo," a phenomenon that extends past a galaxy's visible structure and contains the ethereal but weighty dark matter.

"In the past, we have always considered the dark halo to be significant, but we did not have the computing resources to explore it as well," said Gebhardt as he lauded the supercomputer's ability.

The Lonestar's mass model for the M87 black hole came out several times the weight than any previous estimate, a result they did not expect at all.

They chose giant elliptical M87 because of it's relative proximity to our own galaxy -- about 55 million light years away.

The galaxy is also notable for the spectacularly active jet of light shooting from its core, emitted as matter swirls closer to the black hole.

These factors make M87 "the anchor for supermassive black hole studies," Gebhardt said.

The new results, he added, also suggest all other black hole masses for the largest galaxies are grossly underestimated.

Such a conclusion would fundamentally change consideration of the physical laws of space, as scientists examine black holes and probe how galaxies grow.

For the problem of weighing quasars, seen at a much earlier period in the vast expanse of cosmic time, the astronomer's conclusion could have major implications.

Quasars shine brightly and emit copious radiation as matter crosses the event horizon -- part of the black hole from which nothing, not even light, can escape.

"There is a long-standing problem in that quasar black hole masses were very large -- 10 billion solar masses," Gebhardt said.

"But in local galaxies, we never saw black holes that massive, not nearly. The suspicion was before that the quasar masses were wrong," he said.

Yet, he said, if scientists "increase the mass of M87 two or three times, the problem almost goes away."

While the astronomer's conclusions are model-based, Gebhardt noted that they are supported by his recent physical telescope observations.

He has most recently tested the computer simulations by examining M87 and other galaxies through powerful instruments at the Hawaii-based Gemini North Telescope Hilo and the European Southern Observatory's Very Large Telescope in Chile's high altitude Atacama desert.

.


Related Links
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Texas-Size Computer Finds Most Massive Black Hole In Galaxy M87
Pasadena CA (SPX) Jun 09, 2009
Astronomers Karl Gebhardt (The University of Texas at Austin) and Jens Thomas (Max Planck Institute for Extraterrestrial Physics) have used new computer modeling techniques to discover that the black hole at the heart of M87, one the largest nearby giant galaxies, is two to three times more massive than previously thought. Weighing in at 6.4 billion times the Sun's mass, it is the most ... read more


TIME AND SPACE
NASA Announces Winners In Lunar Art Contest

New Tool To Visualize Past, Future Lunar Eclipses

China Considering Manned Lunar Landing In 2025-2030

The Next Moon Missions

TIME AND SPACE
Mars Orbiter Resumes Science Operations

Return Of The Mars Hoax

Life Support Pilot Plant Paves The Way To Moon And Beyond

Mars Reconnaissance Orbiter In Safe Mode After Reboot

TIME AND SPACE
A New Way To Measure Cosmic Distances

New Cleaning Protocol For Future Search For Life Missions

Astronauts test new space suits

To The Moon, By Way Of MIT

TIME AND SPACE
China to launch Mars space probe

China To Launch First Mars Probe In Second Half Of 2009

China Launches Yaogan VI Remote-Sensing Satellite

China Able To Send Man To Moon Around 2020

TIME AND SPACE
Canadian Space Tourist Starts Training For ISS Mission

Work Completed On ISS Docking Bay

ISS Astronauts Complete Spacewalk, Test New Russian Spacesuits

Space station crew doubles to six for first time

TIME AND SPACE
ILS Announces Two Additional Firm Proton Launches

Stat X Fire Suppression System Selected For Giant Crawlers

Arianespace Receives Ariane 5 For Its TerreStar-1 Mission

SPACEX And ATSB Announce New Launch Date For Razaksat Satellite

TIME AND SPACE
Planet-Hunting Method Succeeds At Last

New Method For Finding Alien Oceans

Let The Planet Hunt Begin

The Crowded Universe

TIME AND SPACE
Outside View: Navy needs its Hawkeye

Smallest microwave is just a prototype

Study determines strength of rammed earth

Space Traffic Management In The Earth 21st Century




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement