Subscribe free to our newsletters via your
. 24/7 Space News .

Black hole found spinning near the relativistic limit
by Hamish Johnston for Institute of Physics
London, UK (SPX) Feb 28, 2013

A composite X-ray image of the galaxy NGC1365 taken by NuSTAR and XMM-Newton. (Courtesy: Guido Risaliti)

The best evidence yet that some supermassive black holes (SMBH) rotate at extremely high rates has been found by an international team of astronomers. Made using the recently launched NuStar space telescope, the study suggests that a huge black hole at the centre of a distant galaxy acquired a huge amount of rotational energy as it formed. The discovery could provide important information about how SMBHs and their associated galaxies form and evolve.

Astronomers know that black holes that are as large as a billion solar masses can be found at the heart of most galaxies. Because these gravitational behemoths are created at the same time as their host galaxies, understanding how they formed could provide important information about galaxy formation and evolution.

Knowing the spin of an SMBH can provide important clues about how it formed. If the black hole grew slowly, by sucking in small amounts of matter from all directions, then it isn't expected to have much spin. However, if the formation process involves the black hole gorging rapidly on matter from a specific direction, conservation of angular momentum would leave it with an extremely large spin.

Redshifted X-rays
The spin of a supermassive black hole can be measured by looking at the effect that the spin has on material that is being sucked in to the black hole. This material forms an accretion disc that swirls around the black hole before disappearing from sight. The faster the black hole is spinning, the closer the inner edge of the disc is to the centre of the black hole. As a result, the X-rays emanating from the inner edge are affected by the black hole's gravity more when the black hole is spinning.

Astronomers see this as a "stretching" of the wavelength (redshift) of characteristic X-rays emanating from iron and other elements in the accretion disc. By measuring the redshift, the spin of the black hole can be deduced.

The problem, however, is that these X-rays must first travel through fast-moving clouds of gas that surround the accretion disc. The absorption of X-rays by the gas could mimic the effect of a spinning black hole. As a result, astronomers have not been that confident about their estimates of black-hole spin.

Sensitive at higher energies
Now, Guido Risaliti of the Arcetri Observatory in Florence and astronomers in the US, Denmark and the UK have separated the redshift and cloud effects using data from NASA's NuSTAR space telescope - which was launched in June 2012 - along with data from the European Space Agency's XMM-Newton space telescope.

Unlike other instruments that are sensitive in the 0.5-10 keV range, NuStar can detect X-rays in the 3-80 keV energy range. The instrument's excellent sensitivity at higher energies means that it can tell the difference between the effects of gas absorption and spin on the X-rays.

Risaliti and colleagues pointed the telescopes at the SMBH at the centre of the galaxy NGC1365, which is about 56 million light-years away. This black hole, which is about 2 million times more massive than the Sun, is of particular interest because previous studies had suggested that it was rotating rapidly.

The results suggest that if cloud absorption were the only process affecting the X-rays, then the clouds must be so dense that they absorb up to 98% of the X-rays created in the accretion disc. But if this were the case, then the cloud would quickly absorb vast amounts of energy and then blow apart.

Vast amounts of rotational energy
As a result, Risaliti and colleagues concluded that the spinning black hole did affect the X-rays emitted from the accretion disc. The study confirms that the SMBH is spinning at a rate close to the limit defined by the general theory of relativity.

While the rotational properties of a spinning gravitational singularity are difficult to describe in a simple way, Risaliti explains that the rotational energy of the SMBH at the heart of NGC1365 is about the same as the energy that is given off by a billion stars burning for a billion years.

Risaliti tells that the team is currently looking at observations of NGC1365 in an attempt to understand why the X-ray spectrum changes over time. The spin of an SMBH is expected to be constant, therefore these changes should be related to variations in the accretion disc and other structures close to the black hole.

In the longer term, he believes that studies of SMBH spin in galaxies throughout the universe will provide important information about the formation and evolution of galaxies.

The observations are described in Nature.


Related Links
Institute of Physics
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The paths of photons are random - but coordinated
Copenhagen, Denmark (SPX) Dec 24, 2012
Researchers at the Niels Bohr Institute have demonstrated that photons (light particles) emitted from light sources embedded in a complex and disordered structure are able to mutually coordinate their paths through the medium. This is a consequence of the photons' wave properties, which give rise to the interaction between different possible routes. The results are published in the scientific jo ... read more

Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

Lab Instruments Inside Curiosity Eat Mars Rock Powder

First-ever space tourist plans mission to Mars

Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Stanford scientist closes in on a mystery that impedes space exploration

U.S. research to be free online

NASA Creates Space Technology Mission Directorate

Educator Teams Fly On NASA Sofia Airborne Observatory

Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Ancient Egyptian pigment points to new security ink technology

Laser mastery narrows down sources of superconductivity

In probing mysteries of glass, researchers find a key to toughness turns heads with 3-D iPad app

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement