Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Biological Soil Crust Secrets Uncovered
by Lynn Yarris for Berkeley Lab News
Berkeley CA (SPX) Jun 18, 2013


This looks like ordinary dirt but it is a biological soil crust (BSC), a living mantle of soil particles bound together by microbes and their by-products. BSCs are common to the arid and semiarid lands that make up about 40-percent of Earth's total land mass. (Photo from Ferran Garcia-Pichel)

They lie dormant for years, but at the first sign of favorable conditions they awaken. This sounds like the tagline for a science fiction movie, but it describes the amazing life-cycles of microbial organisms that form the biological soil crusts (BSCs) of Earth's deserts.

Now a research team with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported a unique molecular-level analysis of a BSC cyanobacterium responding to the wetting and drying of its environment. The results hold implications for land management, improved climate change models, and a better understanding of carbon cycling in soil microbial communities and how changes in global temperatures impact Earth's deserts.

"We found a way to measure from start to finish in real unaltered samples the molecular events behind the response of cyanobacterium to wetting and drying in a desert BSC," says Aindrila Mukhopadhyay, a biologist with Berkeley Lab's Physical Biosciences Division. "Not only did we get a good view of the genetic machinery that wakes the microbes up, but we also got a good sense of what constitutes a healthy BSC."

Mukhopadhyay and Trent Northen, a chemist with Berkeley Lab's Life Sciences Division, are the corresponding authors of a paper describing this research in the journal of the International Society for Microbial Ecology. The paper is titled "Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust."

Arid and semi-arid deserts make up about 40-percent of Earth's total land mass. Much of the undisturbed soil crust in these deserts is a living mantle of microbes and their by-products, with the predominant inhabitants being cyanobacteria, microorganisms that use photosynthesis for energy.

To survive dry spells that can go on for years, BSC microorganisms must enter a dormant state but they must also be poised for rapid resuscitation to utilize short periods of precipitation. For a better understanding of how the microbes are able to do this, the Berkeley Lab research team studied the cyanobacterium Microcoleus vaginatus.

"BSC systems represent the world's largest biofilms, and the demise of such systems could release carbon, and probably more importantly, dust into the atmosphere, changing the albedo of snow-packs," says Northen. "Restoring or protecting BSCs through changes in land-use could help pull carbon out of the atmosphere and reduce dust."

A better understanding of BSCs could also deepen our understanding of the carbon cycle, which could improve the accuracy of climate models, as Mukhopadhyay explains.

"In most climate models there is little or no accounting for the carbon fixed by soil microbes," she says. "BSC cyanobacteria are the photosynthetic organism for deserts and understanding their role in the carbon-cycle will help fill in current climate model gaps. This should help improve the accuracy of these models."

The Berkeley Lab team would like to expand their efforts to examine other BSC systems around the world. Among other issues, they would like to identify the signaling mechanisms that inform dormant BSC microbes that moisture is present or that the temperature is changing and it is time to respond.

"BSCs are sentinels for marking the health or decline of the world's deserts, one of Earth's major ecosystems," Mukhopadhyay says. "It is vital that we understand them."

Co-authoring the paper "Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust" were Lara Rajeev, Ulisses Nunes da Rocha, Niels Klitgord, Eric Luning, Julian Fortney, Seth Axen, Patrick Shih, Nicholas Bouskill, Benjamin Bowen, Cheryl Kerfeld, Ferran Garcia-Pichel and Eoin Brodie. A video of Aindrila Mukhopadhyay discussing aspects of her BSC research can be viewed here

.


Related Links
Lawrence Berkeley National Laboratory
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
Zoe Robot Returns To Atacama In Search For Subsurface Life
San Francisco CA (SPX) Jun 14, 2013
The autonomous, solar-powered Zoe, which became the first robot to map microbial life during a 2005 field expedition in Chile's Atacama Desert, is heading back to the world's driest desert this month on a NASA astrobiology mission led by Carnegie Mellon University and the SETI Institute. This time, Zoe is equipped with a one-meter drill to search for subsurface life. As before, Zoe will be ... read more


EXO LIFE
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

EXO LIFE
Mars Water-Ice Clouds Are Key to Odd Thermal Rhythm

Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

EXO LIFE
Lebanese start-ups seek tech boom

China confident in space exploration

A letter to China's first space teacher from U.S. predecessor

Space enthusiasts dream big after Shenzhou-10 launch

EXO LIFE
China's Naughty Space Models

China's space dream crystallized with Shenzhou-10 launch

China astronauts enter space module

China to send second woman into space: officials

EXO LIFE
Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

EXO LIFE
INSAT-3D is delivered to French Guiana for Arianespace's next Ariane 5 launch

A dream launch for Shenzhou X

Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

EXO LIFE
NASA's Hubble Uncovers Evidence of Farthest Planet Forming From its Star

Exoplanet formation surprise

Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

EXO LIFE
LONGBOW Receives Contract for Saudi Arabia Apache Radar Systems

China supercomputer world's fastest: report

Water is no lubricant

Discovery of new material state counterintuitive to laws of physics




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement