Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Better batteries inspired by lowly snail shells
by Staff Writers
Washington DC (SPX) Feb 12, 2015


Lithium manganese nickel oxide and carbon nanotubes clump separately, with no specific interactions. However, when a multifunctional binding peptide is added to the mixture the peptide binds the dispersed carbon nanotubes to lithium manganese nickel oxide particles. Image courtesy Evgenia Barannikova/UMBC.

Scientists are using biology to improve the properties of lithium ion batteries. Researchers at the University of Maryland, Baltimore County (UMBC) have isolated a peptide, a type of biological molecule, which binds strongly to lithium manganese nickel oxide (LMNO), a material that can be used to make the cathode in high performance batteries.

The peptide can latch onto nanosized particles of LMNO and connect them to conductive components of a battery electrode, improving the potential power and stability of the electrode.

The researchers will present their results at the 59th annual meeting of the Biophysical Society, held Feb. 7-11 in Baltimore, Maryland.

"Biology provides several tools for us to solve important problems," said Evgenia Barannikova, a graduate student at UMBC. Barannikova works in the lab of Mark Allen and studies how biological molecules in general can improve the properties of inorganic materials in batteries. "By mimicking biological processes we can find the better solution," she said.

One of the problems currently facing battery researchers is the difficulty of working with nanoscale materials, which due to their extra tiny size can be hard to control and hold in place.

The frustrations of working with nanosized materials are worth overcoming, however. Nanostructured electrodes in Li-ion batteries have several advantages over bulk material electrodes, including shorter distances for charge-carrying particles to travel and a high surface area that provides more active sites for electrochemical reactions to occur - all of which translates to batteries that are lighter and longer-lasting.

To take on the challenge of manufacturing on the nanoscale Barannikova and her colleagues have turned for help to biological molecules called peptides.

Themselves made up from strings of molecules known as amino acids, peptides are naturally occurring and bind to many different types of organic and inorganic materials, depending on their sequence of the amino acids. They play many roles in the human body, from signaling in the brain to regulating blood sugar, and some drugs, like insulin, are made up of peptides.

One of the inspirations for her research, Barannikova said, was the way that organisms such as mollusks use peptides to control the growth of their shells. They demonstrate remarkable control in order to build intricate nano- and macrostructures from inorganic materials like calcium carbonate, she said.

The researchers borrowed the general approach of the mollusks, but had to employ some lab-bench wizardry to find the appropriate peptide. No snail, after all, makes its shell from lithium manganese nickel oxide.

Barannikova and her colleagues used a procedure called "Phage Display" to screen more than one billion possible peptides in search of one that would stick strongly to lithium manganese nickel oxide. The "peptide library" through which the researchers searched is commercially produced by a laboratory supply company, and contains a vast number of randomly combined amino acid sequences incorporated into a protein made by a virus called the M13 bacteriophage.

The researchers isolated a peptide that binds to lithium manganese nickel oxide by combining the library with a sample of the metal oxide and then repeatedly washing away the peptides that didn't stick to it. The researchers then combined the newly-discovered peptide with a previously isolated peptide that binds to carbon nanotubes. Carbon nanotubes can serve as conductive nanowires in Li-ion electrodes.

The resulting peptide could then form a bridge, binding to both the lithium manganese nickel oxide nanoparticles and the carbon nanotubes and keeping them close to each other so that they can maintain a connection through multiple charging cycles.

By helping to maintain a highly organized architecture at the nanoscale, the researchers expect that their peptides will improve the power and cycling stability of future Li-ion batteries, allowing them to be smaller and maintain longer lifetimes.

The team is currently testing how well the new cathodes perform. Going forward, Barannikova plans to make an anode with similar techniques and to integrate the two components. "I hope to demonstrate an entire biotemplated battery in my Ph.D. thesis," she said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Biophysical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
membrane will make batteries safer, thinner
Ann Arbor MI (SPX) Jan 29, 2015
New battery technology from the University of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013. The innovation is an advanced barrier between the electrodes in a lithium-ion battery. Made with nanofibers extracted from Kevlar, the tough material in bulletproof vests, the barrier stifles the growth of metal tendrils that can become unwanted p ... read more


ENERGY TECH
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

ENERGY TECH
Scientists fail to explain strange plumes spotted on Martian surface

NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Rover Nearing Marathon Achievement

NASA's Curiosity Analyzing Sample of Martian Mountain

ENERGY TECH
Critical NASA Science Returns to Earth aboard SpaceX Dragon Spacecraft

Industry: Risk aversion costs more than 'fast failure'

45th Space Wing, SpaceX sign first-ever landing pad agreement at the Cape

Russian research team explores vision complications for astronauts

ENERGY TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

ENERGY TECH
NASA, Space Station Partners Announce Future Mission Crew Members

Europe destroys last space truck to ISS

Camera to record doomed ATV's disintegration - from inside

ATV to bid farewell to Space Station for last time

ENERGY TECH
SpaceX launches deep-space weather observatory

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

ENERGY TECH
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

ENERGY TECH
Saab producing components, sub-systems for Marine Corps radar

Cosmic "Reionization" Is More Recent than Predicted

DSCOVR: Mission Success for Moog Engines Over a Decade Later

Measurement of key molecule increases accuracy of combustion models




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.