Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Berlin researchers open a door for solid state physics
by Staff Writers
Dresden, Germany (SPX) Aug 26, 2013


Researchers have documented how inelastic scattering can intelligently intensify so that a shift of frequency is observed. Credit: Helmholtz-Zentrum Berlin/E. Strickert.

Without the currently available plethora of X-ray methods, basic research in the physical sciences would be unthinkable. The methods are used in solid state physics, in the analysis of biological structures, and even art historians have X-rays to thank for many new insights. Now, scientists at the Helmholtz Center Berlin (HZB) have identified yet another area of application.

The team around Dr. Martin Beye and Prof. Alexander Fohlisch was able to show that solids lend themselves to X-ray analysis based on nonlinear physical effects. Until now, this could only be done using laser analysis. The work is being published in the e-pub-ahead-of-print-issue of the journal Nature. Their results could potentially redefine what future lightsources ought to look like.

Nonlinear effects form the basis of laser physics. Until now, they did not appear to be useful in X-ray analysis. The physics that underlie X-ray methods were based solely on linear effects, meaning whenever the radiation encounters the object that is being examined, each light particle - each photon - is working in isolation.

With lasers, it's a different story. The energy and power density of incoming laser light can get so high that photons actually work together and nonlinear effects result from their interaction with matter.

This results in materials greatly enhancing certain colors of light. In other words, if you irradiate a crystal with green light, the light that gets irradiated is actually red. This color can be precisely correlated with the structural properties of the material that is being analyzed.

Now, Alexander Fohlisch from the HZB and his team were able to observe through a series of experiments at Hamburg's short-pulse X-ray laser FLASH that these types of effects can also be achieved using soft X-rays and that this method works on solids as well. "Normally, inelastic scattering processes using soft X-rays are ineffective," explains Martin Beye, the study's primary author: "Our experiment allowed us to document how inelastic X-ray scattering can be intelligently intensified. Just like a laser, the different photons are actually working together and amplifying each other and we end up with a very high measurement signal."

Looking ahead, by setting up appropriate instruments, synchrotron sources might hold a strong appeal for research fields like superconductivity experiments, which previously relied almost exclusively on neutron scattering. Inelastic scattering processes are also in demand when we're talking about element specific investigations.

Like, for instance, if the goal is to distinguish between ions of the same element according to their oxidation state, which, in turn, isn't possible using neutron scattering. Further examples are time-resolved processes, ultrafast processes like the breaking and formation of chemical bonds.

"Modern-day X-ray sources are not at all optimized for the application of inelastic scattering," says Alexander Fohlisch.

"With the current results, we know that we can use nonlinear effects even with soft X-ray radiation. What we need are photon sources capable of delivering short light pulses in rapid succession. This has to be taken into consideration during future photon source development." With its BESSY-VSR upgrade project, the HZB is creating just the right prerequisites.

.


Related Links
Helmholtz Association
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Quantum teleportation: Transfer of flying quantum bits at the touch of a button
Mainz, Germany (SPX) Aug 23, 2013
By means of the quantum-mechanical entanglement of spatially separated light fields, researchers in Tokyo and Mainz have managed to teleport photonic qubits with extreme reliability. This means that a decisive breakthrough has been achieved some 15 years after the first experiments in the field of optical teleportation. The success of the experiment conducted in Tokyo is attributable to the use ... read more


TIME AND SPACE
NASA Prepares for First Virginia Coast Launch to Moon

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

TIME AND SPACE
International Space Agencies Outline Steps to Take Humans to Mars

Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

TIME AND SPACE
NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

Groundbreaking space exploration research at UH

TIME AND SPACE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

TIME AND SPACE
Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

TIME AND SPACE
NASA Explores New Uses for Historic Launch Structures

Telemetry data confirms launch of South Korean satellite

ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

TIME AND SPACE
Waking up to a new year

Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

TIME AND SPACE
Lab-made complexes are "sun sponges"

Physicists pinpoint key property of material that both conducts and insulates

Using x-ray vision to detect unseen gold

U.S. firm releases $1,400 scanner to create 3-D printing files




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement