Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Berkeley Lab scientists unveil an X-ray technique called HARPES
by Staff Writers
Berkeley CA (SPX) Aug 26, 2011


Alexander Gray (left) and Charles Fadley at Beamline 9.3.1 of Berkeley Lab's Advanced Light Source where they will soon be able to carry out their hard x-ray angle-resolved photoemission spectroscopy (HARPES) experiments. Credit: Photo by Roy Kaltschmidt, Berkeley Lab.

The expression "beauty's only skin-deep" has often been applied to the chemistry of materials because so much action takes place at the surface. However, for many of the materials in today's high technologies, such as semiconductors and superconductors, once a device is fabricated it is the electronic structures below the surface, in the bulk of the material or in buried layers, that determine its effectiveness.

For the past 30 years, one of the most valuable and widely used techniques for studying electronic structures has been ARPES - Angle-Resolved PhotoEmission Spectroscopy.

However, this technique primarily looks at surfaces. Now, for the first time, bulk electronic structures have been opened to comparable scrutiny through a new variation of this standard called HARPES - Hard x-ray Angle-Resolved PhotoEmission Spectroscopy - whose development was led by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab).

"HARPES should enable us to study the electronic structure of any new material in the bulk, with minimum effects of surface reactions or contamination," says physicist Charles Fadley who led the development of HARPES.

"Our technique should also allow us to probe the buried layers and interfaces that are ubiquitous in nanoscale devices, and are key to smaller logic elements in electronics, novel memory architectures in spintronics, and more efficient energy conversion in such technologies as photovoltaic cells."

Fadley is a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California (UC) Davis where he is a Distinguished Professor of Physics. He is also one of the world's foremost practitioners of photoelectron spectroscopy, a technique based on the photoelectric effect described in 1905 by Albert Einstein.

When a beam of photons - particles of light such as x-rays - is flashed on a sample, energy is transferred from the photons to electrons, causing them to be emitted from the sample.

By measuring the kinetic energy of these emitted photoelectrons and the angles at which they are ejected, scientists can learn much about the sample's electronic structure.

"The key to probing the bulk electronic structure is using hard x-rays, which are x-rays with sufficiently high photon energies to eject photoelectrons from deep beneath the surface of a solid material," Gray says.

"High-energy photons impart high kinetic energies to the ejected photoelectrons, enabling them to travel longer distances within the solid. The result is that more of the signal originating from the bulk will be detected by the analyzer."

Whereas the typical ARPES experiment, using low energy or "soft" x-rays (10~100 eV photons), probes to a depth of less than 10 angstroms (a few layers of atoms), with their HARPES technique Fadley and Gray and their colleagues on this project were able to probe as deep as 60 Angstroms into the bulk of single crystals of tungsten and gallium-arsenide.

Their achievement was made possible by a combination of third generation light sources capable of producing intense beams of hard x-rays, and an advanced electron spectrometer to measure energies and angles.

"While high-energy photons are needed to penetrate into the bulk, at high energies the photoemission intensity that carries information about the electronic band structure is drastically reduced by various factors, such as phonon effects and small photoelectric cross sections of the valence-band electron orbitals," Gray says.

"However, HARPES measurements become possible with the advent of the third-generation synchrotron light sources and the development of hard x-ray monochromators and optics capable of focusing a highly intense x-ray beam into a very small measurement spot."

To demonstrate the capabilities of their HARPES technique, Fadley and Gray used a high intensity undulator beamline at the SPring8 synchrotron radiation facility in Hyogo, Japan, which is operated by the Japanese National Institute for Materials Sciences.

The samples they worked with, tungsten and gallium arsenide, contain relatively heavy elements that have relatively small phonon effects (atomic vibrations) but to further reduce these effects the samples were cryo-cooled. By combining room temperature and cryo data, the researchers were able to correct for the influence of indirect transitions and photoelectron diffraction in their results.

"Having sufficient photons from the beamline was critical as was having a high energy resolution that required an undulator source and a special monochromator and a photoelectron spectrometer with both high throughput for intensity and a lens with angle-resolving capability," Fadley says.

Adds Gray, "Our HARPES technique not only provided us with information about the energies of the emitted photoelectrons, but also with information about the crystal momentum of electrons within the bulk solid.

"This extra dimension carries a vast amount of information regarding electronic, magnetic and structural properties of materials, and can be used for in-depth studies of such novel phenomena as high-temperature superconductivity and so-called Mott transitions from insulating to conducting states that might be used for logic switching in the future."

In the future, Fadley and Gray will be able to carry out HARPES experiments much closer to home. At Berkeley Lab's Advanced Light Source (ALS), the first of the world's third generation synchrotron radiation facilities, a new experimental chamber for beamline 9.3.1 is scheduled to open this fall that will provide unique hard x-ray angle-resolved photoemission capabilities.

Says Zahid Hussain, who manages the ALS Scientific Support group, "An additional hard x-ray photoemission spectroscopy chamber at beamline 9.3.1 will feature an ambient pressure high energy photoemission capability that will allow the study of energy related problems, such as batteries, fuel cells, and catalysis under in-situ and in-operando conditions.

"It will also enable depth-sensitive studies and make it possible to probe not only solid, but also gas and liquid interfaces. This will be the first such experimental facility in the world."

The successful demonstration of the HARPES technique has been reported in the journal Nature Materials in a paper titled "Probing bulk electronic structure with hard X-ray angle-resolved photoemission." Fadley was the senior author of this paper. The lead and corresponding author was Alexander Gray, a member of Fadley's UC Davis research group and also an affiliate with Berkeley Lab's Materials Sciences Division. Co-authoring the Nature Materials paper with Fadley and Gray were Christian Papp, Shigenori Ueda, Benjamin Balke, Yoshiyuki Yamashita, Lukasz Plucinski, Jan Minar, Juergen Braun, Erik Ylvisaker, Claus Schneider, Warren Pickett, Hubert Ebert and Keisuke Kobayashi.

.


Related Links
Lawrence Berkeley National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Etch-a-sketch with superconductors
London, UK (SPX) Aug 25, 2011
Reporting in Nature Materials this week, researchers from the London Centre for Nanotechnology and the Physics Department of Sapienza University of Rome have discovered a technique to 'draw' superconducting shapes using an X-ray beam. This ability to create and control tiny superconducting structures has implications for a completely new generation of electronic devices. Superconductivity ... read more


CHIP TECH
NASA's Next Generation Robotic Lander Gets Sideways During Test

Moon Express Gets Thumbs-Up from NASA for Developing New Lunar Landing Technology

NASA Moon Mission in Final Preparations for September Launch

Neil Armstrong urges return to the Moon

CHIP TECH
Russian, European space agencies to team up for Mars mission

New Rover Snapshots Capture Endeavour Crater Vistas

France, Russia talk of Mars mission

Possibility of Mars microbial life eyed

CHIP TECH
New Report Analyzes Development Paths of Emerging Space Nations and Sustainable Use of Outer Space

First Soyuz launch from Kourou to go ahead: Arianespace

Recent grad's astro feats regarded as research crown 'joule'

Draper Spacesuit Could Keep NASA Astronauts Stable, Healthier in Space

CHIP TECH
Orbits for Tiangong

Chinese orbiter launch failure will not affect unmanned space module launch

Rocket malfunction causes satellite to not reach preset orbit

China satellite aborts mission after 'malfunction'

CHIP TECH
Thales Alenia Space's Cygnus PCM shipped to United States

Resupply Craft Lost While Crew Focuses on Departure and Science

Russia may delay manned space launch after crash

ISS crew safe despite supply failure: Russia, US

CHIP TECH
The fifth Ariane 5 of 2011 is ready for integration of its dual-satellite payload

Glonass-M satellite launch postponed for additional check

Russia 'grounds Soyuz rockets' after space crash

Russian spaceship crashes back to Earth

CHIP TECH
A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

Hubble to Target 'Hot Jupiters'

Stellar eclipse gives glimpse of exoplanet

CHIP TECH
Steve Jobs a product wizard: Wozniak

Japan cuts radiation exposure limits for children

Mexican Government Gains Satellite Management Efficiency from Optimal Satcom Integrated Software System

Fukushima caesium leaks 'equal 168 Hiroshimas'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement