Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Backwards Black Holes Might Make Bigger Jets
by Staff Writers
Pasadena CA (JPL) Jun 02, 2010


This artist's concept shows a galaxy with a supermassive black hole at its core. The black hole is shooting out jets of radio waves. Image credit: NASA/JPL-Caltech

Going against the grain may turn out to be a powerful move for black holes. New research suggests supermassive black holes that spin backwards might produce more ferocious jets of gas. The results have broad implications for how galaxies change over time.

"A lot of what happens in an entire galaxy depends on what's going on in the miniscule central region where the black hole lies," said theoretical astrophysicist David Garofalo of NASA's Jet Propulsion Laboratory in Pasadena, Calif. Garofalo is lead author of a new paper that appeared online May 27 in the Monthly Notices of the Royal Astronomical Society.

Other authors are Daniel A. Evans of the Massachusetts Institute of Technology, Cambridge, Mass., and Rita M. Sambruna of NASA Goddard Space Flight Center, Greenbelt, Md.

Black holes are immense distortions of space and time with gravity that is so great, even light itself cannot escape. Astronomers have known for more than a decade that all galaxies, including our own Milky Way, are anchored by tremendous, so-called supermassive black holes, containing billions of suns' worth of mass.

The black holes are surrounded and nourished by disks of gas and dust, called accretion disks. Powerful jets stream out from below and above the disks like lasers, and fierce winds blow off from the disks themselves.

The black holes can spin either in the same direction as the disks, called prograde black holes, or against the flow - the retrograde black holes. For decades, astronomers thought that the faster the spin of the black hole, the more powerful the jet. But there were problems with this "spin paradigm" model. For example, some prograde black holes had been found with no jets.

Garofalo and his colleagues have been busy flipping the model on its head. In previous papers, they proposed that the backward, or retrograde, black holes spew the most powerful jets, while the prograde black holes have weaker or no jets.

The new study links the researchers' theory with observations of galaxies across time, or at varying distances from Earth. They looked at both "radio-loud" galaxies with jets, and "radio-quiet" ones with weak or no jets. The term "radio" comes from the fact that these particular jets shoot out beams of light mostly in the form of radio waves.

The results showed that more distant radio-loud galaxies are powered by retrograde black holes, while relatively closer radio-quiet objects have prograde black holes. According to the team, the supermassive black holes evolve over time from a retrograde to a prograde state.

"This new model also solves a paradox in the old spin paradigm," said David Meier, a theoretical astrophysicist at JPL not involved in the study. "Everything now fits nicely into place."

The scientists say that the backward black holes shoot more powerful jets because there's more space between the black hole and the inner edge of the orbiting disk. This gap provides more room for the build-up of magnetic fields, which fuel the jets, an idea known as the Reynold's conjecture after the theoretical astrophysicist Chris Reynolds of the University of Maryland, College Park.

"If you picture yourself trying to get closer to a fan, you can imagine that moving in the same rotational direction as the fan would make things easier," said Garofalo. "The same principle applies to these black holes. The material orbiting around them in a disk will get closer to the ones that are spinning in the same direction versus the ones spinning the opposite way."

Jets and winds play key roles in shaping the fate of galaxies. Some research shows that jets can slow and even prevent the formation of stars not just in a host galaxy itself, but also in other nearby galaxies.

"Jets transport huge amounts of energy to the outskirts of galaxies, displace large volumes of the intergalactic gas, and act as feedback agents between the galaxy's very center and the large-scale environment," said Sambruna. "Understanding their origin is of paramount interest in modern astrophysics."

.


Related Links
Jet Propulsion Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Nearby Black Hole Is Feeble And Unpredictable
Miami FL (SPX) May 28, 2010
For over 10 years, NASA's Chandra X-ray Observatory has repeatedly observed the Andromeda Galaxy for a combined total of nearly one million seconds. This unique data set has given astronomers an unprecedented view of the nearest supermassive black hole outside our own Galaxy. Astronomers think that most galaxies - including the Milky Way - contain giant black holes at their cores that are ... read more


TIME AND SPACE
MSU Robot Digs Most Moon Dirt

Japan Draws Plans To Build Research Center On Moon

Caterpillar Participates In Inaugural Lunabotics Mining Competition

Loral Announces Milestone in NASA Ames Project

TIME AND SPACE
Spirit Still In Deep Sleep

Mars Was Wet But Was It Warm

Opportunity's Solar Panels Get Minor Cleaning

NASA Orbiter Penetrates Mysteries Of Martian Ice Cap

TIME AND SPACE
Al Gore, wife Tipper, to separate

Spacecraft set for Earth and comet flybys

Train Like An Astronaut

NASA announces new science missions

TIME AND SPACE
Seven More For Shenzhou

China Signs Up First Female Astronauts

China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

TIME AND SPACE
China May Become Space Station Partner

Expedition 23 Crew Members Returning To Earth Tonight

New space station crew will bid farewell to shuttle

Three Crew Members Prepare To Return Home On Tuesday

TIME AND SPACE
ILS Announce Contract For Launch Of YAMAL 401 And YAMAL 402

Ariane 5 Makes History With The ASTRA 3B And COMSATBw-2 Mission

Ariane 5 Is Poised For Launch With ASTRA 3B And COMSATBw-2

H2A Launches Six Satellites

TIME AND SPACE
'Out Of Whack' Planetary System

Weird Orbits Of Neighbors Can Make 'Habitable' Planets Not So Habitable

Get It While it's Hot! Star Devours Planet

Exoplanetary System Offers Clues To Disturbed Past

TIME AND SPACE
Microsoft sticks up for Windows operating system

World's first iPad lookalike on sale in China

Small Near-Earth Object Probably A Rocket Part

NASA Completes Critical Design Review Of One Landsat Instrument




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement