Subscribe free to our newsletters via your
. 24/7 Space News .

Autonomous Rover Drills Underground in the Atacama
by Leslie Mullen for Astrobiology Magazine
Atacama Desert, Chile (SPX) Jul 09, 2013

Zoe being checked out at start of the traverse. In the background are the two 4x4 trucks that we will use to follow the robot. The engineers stay within communication range to monitor the robot, but try to say out of view as much as possible. Credit: CMU Field Robotics Center.

A rover named Zoe recently traveled the Atacama Desert in Chile, the driest place on Earth and a landscape that has much in common with the harsh terrain of Mars. From the unrelenting UV radiation, to the thin, cold air at high altitudes, to the desiccated sand and lava flows, the Atacama is not especially "life-friendly," but it is a great place to test instruments for future Mars missions.

Equipped with a drill, cameras, spectrometers and other sensors, for a little over two weeks Zoe analyzed soil samples from above and below the surface. The surface of Mars is considered uninhabitable because of the harsh UV, thin atmosphere, extreme cold and acidic soil, and so many believe the best place to find evidence of past or present life on Mars is deep underground.

This recent excursion with Zoe ended on Saturday, June 29, and it is part of a longer three-year campaign, led by David Wettergreen of Carnegie Mellon University, to test the rover's instruments and drilling capability. The project is supported through NASA's ASTEP program to advance the technology and techniques used in planetary exploration.

Thanks to Zoe's onboard autonomy software, the science team in the United States was able to explore the Atacama remotely, just as NASA mission control would operate a rover on Mars.

The engineering team was in the field with the rover, on hand just in case anything went wrong. Also, "we had a couple people collecting ground truth," says Wettergreen, "digging pits to make sure what the rover was sampling autonomously was the same as what we'd get on our own." After Zoe's meter-long drill dug up a sample, the rover deposited them into sample cups and analyzed them with instruments such as a laser Raman spectrometer (the MMRS or Mars Microbeam Raman Spectrometer). The MMRS shines a laser on the sample and measures the energy of the photons scattered back, providing a clear spectrum of each mineral phase and organic molecule.

"The Raman spectrometer instrument was remarkably robust," says Wettergreen. Not only was it exposed to a broad range of temperatures, "which is a lot for a laser and detector to take," he says, "but it got quite a beating over some pretty rocky terrain. Some of the areas we crossed were fairly rugged, so it had to put up with a lot of vibration and shock."

The rover also has a Bio-UltraViolet Fluorescent instrument (BUF) composed of light-field cameras that can focus at multiple depths. "The UV causes organics to fluoresce, telling us the abundance of organic materials in the samples," he says.

Zoe made 11 sample drill holes, with samples taken at different depths, resulting in about 40 samples. "Ultimately the science team settled on taking samples from 10 centimeters, then 30 centimeters, and then 80," says Wettergreen. "The depths were determined on where salt layers formed in the soil, which is a function of how far moisture penetrated."

Nathalie Cabrol of the SETI Institute, the Science PI for the project, sees the field campaign as a big success -- the rover was highly mobile, traveling up to 10 kilometers per day, and the drill and other instruments worked as they should to gather samples and analyze them. And importantly, all of this was performed autonomously for the first time.

"This is huge," says Cabrol. "We can now provide astrobiology with a highly mobile drill-mounted rover that is able to test for the possibility of life on Mars."

She says that by "punching holes down to 80 centimeters, Zoe can get better access of the record of life on Mars than the MER Opportunity or the MSL Curiosity rovers that are now on Mars." She says they collected good quality data, and now scientists need time to analyze it all.

One problem that can arise with drilling is contamination of the samples. Wettergreen says this issue was studied intensively in the lab by Honeybee Robotics, the company who made the drill (and also made the drills for MER Opportunity and MSL Curiosity). He says there are two ways to contaminate a drill hole: by moving material at different depths (either up or down the drill column), and transferring material from one drill site to another.

The Honeybee lab tests found that only a small fraction of material moves in the drill column -- instead the force of the drilling process essentially cleans the drill. Although they did not practice this in the field due to the limitations of time, on Mars, a rover would minimize any contamination between sites by drilling a few "waste" holes just to clean off the drill.

After this year's field campaign, the engineers now have a list of improvements and refinements they need to make on the rover and its instruments. Next year they plan to take Zoe even farther afield, following a east-west transect across Chile into different elevations and environmental conditions, and hopefully generating even larger science returns.


Related Links
Astrobiology Magazine
All about the robots on Earth and beyond!

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Members of Top Nine Software Teams Move Forward from DARPA's Virtual Robotics Challenge
Washington DC (SPX) Jul 01, 2013
The DARPA Robotics Challenge (DRC) was created with a clear vision: spur development of advanced robots that can assist humans in mitigating and recovering from future natural and man-made disasters. Disasters evoke powerful, physical images of destruction, yet the first event of the DRC was a software competition carried out in a virtual environment that looked like an obstacle course set in a ... read more

Dust hazard for Moon missions: scientists

NASA Seeks Information on Commercial Robotic Lunar Lander Capabilities

Orbiting astronaut controls robot on Earth, testing feasibility of CU-Boulder project on far side of the moon

Metamorphosis of Moon's Water Ice Explained

Opportunity's Improbable Anniversary

Dry run for the 2020 Mars Mission

Opportunity Clocks Up 37 Kilometers Of Roving Mars

Mars Rover Opportunity Trekking Toward More Layers

Space seeds could "benefit" traditional Chinese medicines

Kennedy Facilities Key to NASA's Transition

Voyager 1 Explores Final Frontier Of Our Solar Bubble

NASA's Voyager 1 approaches outer limit of solar system

China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

Russia to go ahead with space freighter launch

ISS technology to 'hear' potential leaks

Russian cosmonauts conduct space station tasks in spacewalk

Accelerating ISS Science With Upgraded Payload Operations Integration Center

Premature launch said likely cause of Russian rocket failure

Europe okays design for next-generation rocket

Kazakh PM orders to form govt commission to assess environmental impact from Proton crash

Analysis of telemetry data of crashed Proton rocket flight completed

Hubble Telescope reveals variation between hot extrasolar planet atmospheres

UCSB Astronomer Uncovers The Hidden Identity Of An Exoplanet

Gas-Giant Exoplanets Cling Close to Their Parent Stars

Astronomers Detect Three 'Super-Earths' in Nearby Star's Habitable Zone

Mainz laser system allows determination of atomic binding energy of the rarest element on earth

After millennia of mining, copper nowhere near 'peak'

BBC announces decision to halt 3D television programming

Making hydrogenation greener

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement