Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Atomic-Scale Catalysts May Produce Cheap Hydrogen
by Staff Writers
Raleigh NC (SPX) Jan 24, 2014


Researchers found MoS2 thin films are effective catalysts for hydrogen production.

Researchers at North Carolina State University have shown that a one-atom thick film of molybdenum sulfide (MoS2) may work as an effective catalyst for creating hydrogen. The work opens a new door for the production of cheap hydrogen.

Hydrogen holds great promise as an energy source, but the production of hydrogen from water electrolysis - freeing hydrogen from water with electricity - currently relies in large part on the use of expensive platinum catalysts.

The new research shows that MoS2 atomically thin films are also effective catalysts for hydrogen production and - while not as efficient as platinum - are relatively inexpensive. (A Q and A with Cao on how this research differs from earlier studies of other catalysts for hydrogen production can be found on NC State's research blog.)

"We found that the thickness of the thin film is very important," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work.

"A thin film consisting of a single layer of atoms was the most efficient, with every additional layer of atoms making the catalytic performance approximately five times worse."

The effect of the thin films' thickness came as a surprise to researchers, because it has long been thought that catalysis normally takes place along the edges of the material. Because thin films have very little 'edge,' conventional wisdom held that thin films were essentially catalytically inactive.

But the researchers discovered that a material's thickness is important because the thinner the MoS2 thin film is, the more conductive it becomes - and the more conductive it becomes, the more effective it is as a catalyst.

"The focus has been on creating catalysts with a large 'edge' side," Cao says. "Our work indicates that researchers may want to pay more attention to a catalyst's conductivity."

Cao developed the technique for creating high-quality MoS2 thin films at the atomic scale in 2013. The current production of hydrogen from the atomically thin film is powered by electricity. His team is working to develop a solar-powered water-splitting device that uses the MoS2 thin films to create hydrogen.

The paper, "Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution," is published online in Nano Letters. Lead author of the paper is Yifei Yu, a Ph.D. student at NC State. Co-authors include Yanpeng Li, a Ph.D. student at NC State; Dr. Shengyang Huang, a former visiting scholar at NC State; and Drs. Stephan Steinmann and Weitao Yang of Duke University. The research was supported by U.S. Army Research Office grant W911NF-13-1-0201.

.


Related Links
North Carolina State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Energy storage in miniaturized capacitors may boost green energy technology
Washington DC (SPX) Jan 22, 2014
The capacitors of electronic circuits function something like batteries - storing electrical charge that can be quickly dumped to power devices like camera flashes. So-called "supercapacitors" take the energy-storing abilities of capacitors a step further, storing a far greater charge in a much smaller package. In a paper published in the journal AIP Advances researchers describe the possi ... read more


ENERGY TECH
Sole camera from NASA moon missions to be auctioned

New results on the geologic characteristics of the Chang'e-3 exploration region

China's moon rover experiences abnormality

Yutu moon rover has 'abnormality': Xinhua

ENERGY TECH
Curiosity Mars Rover Checking Possible Smoother Route

NASA looking for smoother route for Mars rover travels

NASA Mars project: radiation risk of highest concern

Russian Scientists Propose Water Probe for NASA Mars Rover

ENERGY TECH
FAA Grants Waypoint 2 Space Safety Approval Of Training Programs

Russian Space Farmers Harvest Wheat, Peas and Greens

British astronaut says space travel vital to survival of human race

NASA Launches Third Generation Communications Satellite

ENERGY TECH
'Goodnight, humans': Says Yutu As The Sun Sets

Extra Time for Tiangong

Netizens extend blessings to troubled lunar rover

Official: China's space policy open to world

ENERGY TECH
British firm says its space station cameras to provide Web images

Russia Could Go It Alone After ISS Closes

Russia plans three spacewalks from ISS in 2014 - Energia

Space Station 2024 Extension Expands Economic and Research Horizons

ENERGY TECH
45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

Turkish Telecoms Satellite to Launch From Baikonur Feb. 15

ENERGY TECH
First Weather Map of Brown Dwarf

NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries

Astronomers create first map of weather on nearby brown dwarf star

ALMA Discovers a Formation Site of a Giant Planetary System

ENERGY TECH
Swiss cheese crystal, or high-tech sponge?

NGC Completes Critical Design Review For James Webb Space Telescope

Liquid Crystal Turns Water Droplets Into 'Gemstones'

Spider silk ties scientists up in knots




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement