Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE MEDICINE
Atlantis to carry next-generation vaccine candidate on last space voyage
by Richard Harth - Science Writer: The Biodesign Institute
Tucson AZ (SPX) Jul 08, 2011


This is Cheryl Nickerson of the Biodesign Institute at Arizona State University. Photo by Nick Meek

On July 8, at approximately 11:26 a.m. EDT, the space shuttle Atlantis will streak skyward from the Kennedy Space Center's launch pad 39A, for one last mission. While the STS-135 flight marks the end of the space shuttle's glory days, its final trip may open a new era of research into infectious diseases, thanks to space bound experiments conducted by Dr's. Cheryl Nickerson, and Roy Curtiss III, along with their colleagues at Arizona State University's Biodesign Institute.

Nickerson, a microbiologist and authority on infectious pathogens, has been using spaceflight or spaceflight analogues since 1998 as an exploratory platform for investigating the processes of infection. Her provocative approach to microbial research has already paid rich dividends.

In earlier experimental missions, Nickerson's team demonstrated that conditions of microgravity present aboard the space shuttle have the potential to increase the disease-causing capacity or virulence of microbes like Salmonella-a major causative agent of food-borne illness.

Further, her research demonstrated that spaceflight globally altered gene expression in Salmonella and other pathogens in critical ways that were not observed during culture on Earth, and were governed by a master switch regulating this response.

"Our earlier work showed the potential for spaceflight to provide novel insight into the mechanisms of microbial virulence that may lead to innovations in infectious disease control here on Earth," she said.

Curtiss, director of the Biodesign Institute's Center for Infectious Diseases and Vaccinology, has engineered an experimental vaccine strain, which will fly aboard Atlantis on its journey to the International Space Station Laboratory. By removing the disease-causing components of Salmonella and incorporating a key protective antigen from Streptococcus pneumoniae, Curtiss has produced a powerful oral vaccine against pneumonia, that has shown promise in phase 1 human clinical trials. The ability of spaceflight to enhance the efficacy of this recombinant attenuated Salmonella vaccine, or RASV, will be the focus of the Atlantis mission.

Current experiments aboard STS-135 will build on decades of earlier research by Nickerson and Curtiss, in attempts to improve the effectiveness of RASVs. These vaccines exploit Salmonella's renowned infectious capacity in order to produce a strong, system-wide immune response.

In addition to the defensive response to Salmonella, the vaccine recipient also marshals an immune response to secondary disease antigens studded on the pathogen's surface membrane-in this case, antigens to pneumococcus, the causative agent of pneumonia.

"Many breakthroughs in life sciences research and translational advancements to the healthcare setting, have been achieved through studying the response of biological systems to extreme environments," Nickerson says.

The extreme environment in the present study is the reduced gravity present during spaceflight, which alters a fundamental physical property encountered by living cells, known as fluid shear.

Fluid shear refers to the physical forces exerted on cells by the extracellular liquids surrounding them. Previous experiments by Nickerson aboard the space shuttles Endeavour and Atlantis showed that changes in fluid shear due to microgravity induced important cellular responses in pathogens, including unique alterations in gene expression and virulence.

Nickerson notes that the responses of pathogenic cells to microgravity may be closely correlated with their behavior during infection here on earth, where the effects of low fluid shear environments present in the body are believed to contribute to virulence.

Such pathogen responses, however, may often evade detection in conventional in vitro experiments on earth, where gravity may be masking this effect. In the current study, this approach is being applied to Salmonella vaccines.

Because RASVs can be produced against a wide variety of human and animal pathogens, the outcome of this research could influence the development of vaccines against many other diseases in addition to pneumonia

Unlike existing anti-pneumococcal vaccines, Curtiss' RASV may be given orally and acts to stimulate mucosal, humoral and cellular immunity, offering enhanced protection. Diseases due to Streptococcus pneumoniae include community-acquired pneumonia, otitis media, meningitis, and bacteremia, and are responsible for some 10 million fatalities per year.

Pneumonia poses a particular threat to newborns and the elderly, who may fail to mount an effective immune response after receiving current anti-pneumococcal vaccines.

The current experiments planned for Atlantis' final mission represent an interesting twist in Nickerson's research into microbial virulence and modes of infection, which she has pursued with longtime collaborator Mark Ott, a senior microbiologist at the Johnson Space Center and a Co-Investigator on the RASV flight experiment.

Again, the pathogen of choice is Salmonella, but here, the invader has been genetically re-engineered to protect from infectious disease, rather than to cause it. The outcome of this research has the potential for better protecting astronauts, who are keenly vulnerable to infection during spaceflight, as well as to help engineer better therapeutics for infectious diseases on earth.

Specially designed growth chambers containing the vaccine strain will travel with Shuttle Atlantis to the International Space Station. During spaceflight, crewmembers will activate the samples, while simultaneously, an earthbound sample will be grown under otherwise identical conditions.

The spaceflight cultured RASV strain, upon its return, will be evaluated against the control sample and analyzed for its ability to protect against pneumococcal infection.

Nickerson and Curtiss hope that results from the RASV spaceflight study will offer important clues for producing a more protective anti-pneumococcal immune response, while limiting undesired side effects.

Although the space shuttle program now enters retirement, space-based research into infectious diseases and vaccinology will continue, thanks to the newly signed Space Act Agreement between the National Laboratory Office and the Biodesign Institute, which will grant routine access to the ISS for continuing research. Nickerson is enthusiastic about spaceflight research and the significant clinical potential for the current study:

"It is incredibly exciting to me that we have the opportunity to utilize spaceflight as a unique research and development platform for novel applications with potential to help fight a globally devastating disease."

Cheryl Nickerson's research was profiled in the May, 2011 issue of Wired Magazine.

.


Related Links
Arizona State University
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE MEDICINE
Stem Cells for Space Shuttle Atlantis
Fort Lauderdale, FL (SPX) Jul 08, 2011
One small South Florida Company with a funny name will be watching NASA's launch of STS-135, Space Shuttle "Atlantis," with more than the usual interest this coming Friday, July 8th, 2011. Miami Fat Supply, (funny name, serious business) was chosen to supply a rather unique payload for this historic last-ever shuttle flight to the International Space Station - human fat, from which stem cells ar ... read more


SPACE MEDICINE
Marshall Center's Bassler Leads NASA Robotic Lander Work

NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

SPACE MEDICINE
Two Possible Sites for Next Mars Rover

Scientists uncover evidence of a wet Martian past in desert

NASA Research Offers New Prospect Of Water On Mars

New Animation Depicts Next Mars Rover in Action

SPACE MEDICINE
Obama hails final shuttle flight, eyes Mars next

End of shuttle flights only a 'bottleneck'

NASA Langley Rockets to Kentucky for Summer Motion

Space technology 'on the NHS' and easier access to space

SPACE MEDICINE
China launches experimental satellite

China to launch an experimental satellite in coming days

China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

SPACE MEDICINE
Russia's Progress M-11M readjusts ISS orbit

Training for ISS flight operations

Space junk narrowly misses station

Improving Slumber on the Space Station With Sleep-Long

SPACE MEDICINE
Arianespace to launch THOR 7 satellite for Telenor

Space X Dragon Spacecraft Returns To Florida

Arianespace Launch Postponed At Least 20 Days

Minotaur Rocket Launch from NASA Wallops Re-Scheduled

SPACE MEDICINE
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

SPACE MEDICINE
"Civilization" lets Facebook players rule world

EU task force on raw materials sought

Apple fires back in patent war with Samsung

China accused of rushing bridge opening




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement