Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




EXO WORLDS
Astronomers gear up to discover Earth-like planets
by Staff Writers
Tucson AZ (SPX) Jun 07, 2013


Many stars are enshrouded in a dust cloud that may hide undiscovered planets with conditions suitable to life. The star Fomalhaut, depicted in this artist's impression, was recently found to have a faint dust cloud in a region resembling the Main Asteroid Belt in our solar system that might harbor yet undetected planets. Credit: ESA, NASA and L. Calcada/ESO.

If one looks only for the shiniest pennies in the fountain, chances are one misses most of the coins because they shimmer less brightly. This, in a nutshell, is the conundrum astronomers face when searching for Earth-like planets outside our solar system.

Astronomers at the University of Arizona are part of an international team of exoplanets hunters developing new technology that would dramatically improve the odds of discovering planets with conditions suitable for life - such as having liquid water on the surface.

The team presented its results at a scientific conference sponsored by the International Astronomical Union in Victoria, British Columbia.

Terrestrial planets orbiting nearby stars often are concealed by vast clouds of dust enveloping the star and its system of planets. Our solar system, too, has a dust cloud, which consists mostly of debris left behind by clashing asteroids and exhaust spewing out of comets when they pass by the sun.

"Current technology allows us to detect only the brightest clouds, those that are a few thousand times brighter than the one in our solar system," said Denis Defrere, a postdoctoral fellow in the UA's department of astronomy and instrument scientist of the Large Binocular Telescope Interferometer, or LBTI.

He explained that while the brighter clouds are easier to see, their intense glare makes detecting putative Earth-like planets difficult, if not impossible. "We want to be able to detect fainter dust clouds, which would dramatically increase our chances of finding more of these planets."

"If you see a dust cloud around a star, that's an indication of rocky debris, and it increases the likelihood of there being something Earth-like around that star," said Phil Hinz, an associate professor of astronomy at the UA's Steward Observatory.

"From previous observations, we know that these planets are fairly common," he added. "We can expect that if a space telescope dedicated to that mission were to look around a certain area of sky, we'd expect to find quite a few."

Hinz and Defrere are working on an instrument that will allow astronomers to detect fainter clouds that are only about 10 times - instead of several thousand times - brighter than the one in our solar system.

"It's like being here in Victoria and trying to image a firefly circling a lighthouse in San Francisco that is shrouded in fog," Defrere said about the technological challenge.

"That level of sensitivity is the minimum we need for future space telescope missions that are to characterize Earth-like planets that can sustain liquid water on the surface," he explained. "Our goal is to eliminate the dust clouds that are too bright from the catalog of candidates because they are not promising targets to detect planets suitable for life."

"With a bright dust cloud, which is 1,000 times brighter than the one in our solar system, its light becomes comparable to that of its star, which makes it easier to detect," explained Hinz.

Fainter clouds, on the other hand, can be about 10,000 times less bright than their star, so it becomes difficult or impossible for observers to make out their faint glow in the star's overpowering glare.

Funded by NASA, the team is in the middle of carrying out tests to demonstrate the feasibility of these observations using both apertures of the Large Binocular Telescope, or LBT, in Arizona. The project aims at determining how difficult it would be to achieve the desired results before committing to a billion-dollar space telescope mission.

According to Hinz, NASA's goal is to be able take a direct picture of Earth-like, rocky planets and record their spectrum of light to analyze their composition and characteristics such as temperature, presence of water and other parameters.

"To do that, one would need a space telescope specifically designed for this type of imaging," he said. "Our goal is to do a feasibility study of whether it would be possible to distinguish the light emission of the planet from the background emission of the dust cloud through direct observation."

The researchers take advantage of a technique known as nulling interferometry and the unique configuration of the LBT, which resembles a giant pair of binoculars.

"We combine the light from two apertures, cancel out the light from the central star, and with that it becomes easier to see the light from the dust cloud," Hinz explained.

"To achieve this, we have to cause the two light paths to interfere with each other, which requires lining them up with very high precision. We'll always have some starlight left because of imperfections in the system, but our goal is to cancel it out to a level of 10,000 to get down to where we can at least detect the faint glow of the dust cloud."

The work presented at the conference used the same technique with the two large telescopes of the Keck Observatory in Hawaii in order to detect the dust cloud around the star Fomalhaut located 25 light years from our sun.

"Based on our observations at the European Very Large Telescope Interferometer, we knew that Fomalhaut was surrounded by a bright dust cloud located very close to the star," said Jeremy Lebreton, principal investigator of the study, who is at the Institut de Planetologie et d'Astrophysique in Grenoble, France.

"Using the Keck Interferometer, we found out that Fomalhaut has a less bright, more diffuse cloud orbiting close to the habitable zone that resembles the Main Asteroid Belt in our solar system. This belt is likely in dynamical interaction with yet undetected planets."

The study presented here is one in a series of three publications and was conducted in collaboration with the University of Amsterdam; the University of Liege in Belgium; NASA's Jet Propulsion Laboratory at Caltech, Pasadena, Calif.; the University of Paris; and the University of Arizona in Tucson, Ariz.

Approximately 250 scientists from around the world convened at the scientific conference, Exploring the Formation and Evolution of Planetary Systems, held June 3-7 in Victoria to discuss the latest observations and theories about exoplanetary systems.

This research paper, An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin, by Lebreton J. et al. is online here.

.


Related Links
University of Arizona
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
'Dust trap' around distant star may solve planet formation mystery
Washington DC (SPX) Jun 07, 2013
Based on a treasure trove of recent discoveries, astronomers now know that planets are remarkably plentiful in our galaxy and may be common throughout the Universe. Though planets appear to form readily, the actual process of planet formation remains a mystery and astronomers are searching for the missing pieces to this cosmic puzzle. An international team of researchers using the new Atac ... read more


EXO WORLDS
NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

EXO WORLDS
SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

First woman in space ready for 'one-way flight to Mars'

Aging Mars rover makes new water discoveries

Driving to 'Solander Point'

EXO WORLDS
Peanut butter, pyjamas, parmesan launched into space

White House moves to curb 'patent trolls'

A certain level of stress is necessary

Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

EXO WORLDS
Crew Shuffles for Shenzhou 10

Shenzhou 10's Missing Parts

Shenzhou's Code of Silence

Shenzhou-10 spacecraft to be launched in mid-June

EXO WORLDS
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

EXO WORLDS
Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

The Future of Space Launch

Rocket Engine Maker Proton-PM to Invest in New Products

EXO WORLDS
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

EXO WORLDS
A path to compact, robust sources for ultrashort laser pulses

Dutch duo peddle old bikes as fashion, furniture

To improve today's concrete, do as the Romans did

Magnetic monopoles erase data




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement