Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Astronomers Probe 'Sandbar' Between Islands Of Galaxies
by Staff Writers
Pasadena CA (JPL) Nov 25, 2010


This diagram shows an unusual galaxy with bent jets. The galaxy was found with the help of NASA's Spitzer Space Telescope in a filament (purple area) connecting two massive islands of galaxies. The little dots in the diagram are other galaxies. The twin jets of material are bending backwards as they sweep through the hot gas in the filament. Image credit: NASA/JPL-Caltech

Astronomers have caught sight of an unusual galaxy that has illuminated new details about a celestial "sandbar" connecting two massive islands of galaxies. The research was conducted in part with NASA's Spitzer Space Telescope.

These "sandbars," or filaments, are known to span vast distances between galaxy clusters and form a lattice-like structure known as the cosmic web.

Though immense, these filaments are difficult to see and study in detail. Two years ago, Spitzer's infrared eyes revealed that one such intergalactic filament containing star-forming galaxies ran between the galaxy clusters called Abell 1763 and Abell 1770.

Now these observations have been bolstered by the discovery, inside this same filament, of a galaxy that has a rare boomerang shape and unusual light emissions.

Hot gas is sweeping the wandering galaxy into this shape as it passes through the filament, presenting a new way to gauge the filament's particle density. Researchers hope that other such galaxies with oddly curved profiles could serve as signposts for the faint threads, which in turn signify regions ripe for forming stars.

"These filaments are integral to the evolution of galaxy clusters - among the biggest gravitationally bound objects in the universe - as well as the creation of new generations of stars," said Louise Edwards, a postdoctoral researcher at the California Institute of Technology in Pasadena, and lead author of a study detailing the findings in Astrophysical Journal Letters.

Her collaborators are Dario Fadda, also at Caltech, and Dave Frayer from the National Science Foundation's National Radio Astronomy Observatory, based in Charlottesville, Virginia.

Blowing in the cosmic breeze
Astronomers spotted the bent galaxy about 11 million light-years away from the center of the galaxy cluster Abell 1763 during follow-up observations with the WIYN Observatory near Tucson, Ariz., and radio-wave observations by the Very Large Array near Socorro, N.M.

The WIYN Observatory is named after the consortium that owns and operates it, which includes the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories.

The galaxy has an unusual ratio of radio to infrared light, as measured by the Very Large Array and Spitzer, making it stand out like a beacon. This is due in part to the galaxy having twin jets of material spewing in opposite directions from a supermassive black hole at its center. These jets have puffed out into giant lobes of material that emit a tremendous amount of radio waves.

Edwards and her colleagues noticed that these lobes appear to be bent back and away from the galaxy's trajectory through the filament. This bow shape, the astronomers reasoned, is due to particles in the filament pushing on the gas and dust in the lobes.

By measuring the angle of the arced lobes, Edwards' team calculated the pressure exerted by the filaments' particles and then determined the density of the medium. The method is somewhat like looking at streamers on a kite soaring overhead to judge the wind strength and the thickness of the air.

According to the data, the density inside this filament is indeed about 100 times the average density of the universe. This value agrees with that obtained in a previous X-ray study of filaments and also nicely matches predictions of supercomputer simulations.

Interconnected superclusters
Galaxies tend to bunch together as great islands in the void of space, called galaxy clusters. These galaxy groupings themselves often keep company with other clusters in "superclusters" that loom as gargantuan, gravitationally associated walls of galaxies. These structures evolved from denser patches of material as the universe rapidly expanded after the Big Bang, some 13.7 billion years ago.

The clumps and threads of this primordial matter eventually cooled, and some of it has condensed into the galaxies we see today. The leftover gas is strewn in filaments between galaxy clusters. Much of it is still quite hot - about one million degrees Celsius (1.8 million degrees Fahrenheit) - and blazes in high-energy X-rays that permeate galaxy clusters.

Filaments are therefore best detected in X-ray light, and one direct density reading of the strands has previously been obtained in this band of frequencies.

But the X-ray-emitting gas in filaments is much more diffuse and weak than in clusters, just as submerged sandbars are extremely hard to spot at sea compared to islands poking above the water. Therefore, obtaining quality observations of filaments is time-consuming with current space observatories.

The technique by Edwards and her colleagues, which uses radio frequencies that can reach a host of ground-based telescopes, points to an easier way to probe the interiors of galaxy-cluster filaments. Instead of laboring to find subtle X-rays clues, astronomers could trust these arced "lighthouse" galaxies to indicate just where cosmic filaments lie.

Knowing how much material these filaments contain and how they interact with galaxy clusters will be very important for understanding the overall evolution of the universe, Edwards said.

The Spitzer observations were made before it ran out of its liquid coolant in May 2009 and began its warm mission.

.


Related Links
Spitzer
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Cosmic Dust And Gas Shape Galaxy Evolution
Chicago IL (SPX) Nov 24, 2010
Astronomers find cosmic dust annoying when it blocks their view of the heavens, but without it the universe would be devoid of stars. Cosmic dust is the indispensable ingredient for making stars and for understanding how primordial diffuse gas clouds assemble themselves into full-blown galaxies. "Formation of galaxies is one of the biggest remaining questions in astrophysics," said Andrey ... read more


STELLAR CHEMISTRY
Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

Mining On The Moon Is A Not-So-Distant Possibility

New Analysis Explains Formation Of Lunar Farside Bulge

STELLAR CHEMISTRY
Opportunity Checks out Intrepid Crater

Shallow Groundwater Reservoirs May Have Been Common On Mars

Earth bacteria could survive on Mars

NASA Mars Rover Images Honor Apollo 12

STELLAR CHEMISTRY
Fewer Risks If Space Science Missions Managed By One Agency

Should We Stay Or Should We Go

Graduation Of Europe's New Astronauts

NASA Administrator Bolden's Statement On International Space Summit

STELLAR CHEMISTRY
Condition Of China's Lunar Probe To Determine Future Application

Tasks For Tiangong

China To Launch First Female Astronauts

Two Telescopes For Tiangong

STELLAR CHEMISTRY
New ISS Crew Begins Pre-Flight Exams

Exp 25 Crew Prepares For Departure

Departure Preps For ISS Crew Members

ISS crew to return to Earth early

STELLAR CHEMISTRY
45th Space Wing Launches NRO Satellite

FAA issues private spacecraft permit

Ball Aerospace STPSat-2 Satellite Launches Aboard STP-S26 Mission

Ukraine Delivers Taurus II Launch Vehicle's First Stage To US

STELLAR CHEMISTRY
500th 'extrasolar' planet discovered

Planet From Another Galaxy Discovered

First glimpse of a planet from another galaxy

Eartly Dust Tails Point To Alien Worlds

STELLAR CHEMISTRY
Savory Sea Salt Sensor To Get Cooked And Chilled

Glory Team Overcomes Engineering Obstacles

Sony eyes December launch of e-readers in Japan

Boeing Offers New Surveillance Detection System




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement