Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Astronomers Find Details about Star Formation in Ancient Galaxy Protoclusters
by Staff Writers
Tokyo, Japan (SPX) Apr 27, 2015


Psuedo-color composite image of PKS 1138-262 region, derived from Hubble Space Telescope's ACS/WFC data archive (F814W and F475W). This region is one of the target protoclusters observed by MOIRCS on Subaru Telescope. Image courtesy NAOJ/HST. For a larger version of this image please go here.

Ongoing studies of distant galaxy protoclusters using the Multi-Object Infrared Camera and Spectrograph (MOIRCS) instrument on the Subaru Telescope is giving astronomers a closer look at the characteristics of star-forming regions in galaxies in the early universe.

A team of astronomers from the National Astronomical Observatory of Japan (NAOJ) and SOKENDAI (Graduate University of Advanced Studies, Japan) are tracking velocity structures and gaseous metallicities in galaxies in two protoclusters located in the direction of the constellation Serpens.

These appear around the radio galaxies PKS 1138-262 (at a redshift of 2.2) and USS 1558-003 (at a redshift of 2.5). The clusters appear as they would have looked 11 billion years ago, and the team concluded that they are in the process of cluster formation that has led to present-day galaxy clusters.

The MOIRCS near-infrared spectrograph is very effective for studies focused on the distant, early universe because strong emission lines from star-forming galaxies are redshifted from the optical to the near-infrared regime. This gives astronomers unique insights into these activities. (Note 1)

Based on the MOIRCS data, the team estimated that both protoclusters have a weight of about 10^14 solar masses. These follow the typical mass growth history of the today's most massive clusters, such as the 'Coma Cluster.' That makes the two protoclusters ideal laboratories for exploring early phasesof galaxy formation in a unique clustered environment.

The metallicity of the gases in the protocluster galaxies was studied using multiple spectral lines emitted from them. The result shows their gaseous metallicities are chemically enriched compared with those of galaxies in the general fields.

Metals (elements heavier than hydrogen and helium) are created in the interiors of stars as they evolve and then released into surrounding gas through supernova explosions or stellar winds (often referred to as chemical evolution; Figure 4a).

The difference in gaseous metallicity between protoclusters and general fields suggests that star-formation histories and/or gas inflow/outflow processes should be different in the protocluster regions. The result also suggests that galaxy formation has already been influenced by environmental conditions in the era that star-formation activities are the most active across the universe. This would be an early phase of strong environmental effects seen in the present galaxy clusters.

In order to explain the metallicity excess in the protoclusters, the team members focused attention on the environmental effects of inflow and outflow mechanism on the galaxy formation process. Recent works report that inflow and outflow activities were most significant eleven billion years ago (at redshift ~2), and were about a hundred times more active relative to those in the local universe.

Clusters of galaxies are large self-gravitating systems in which galaxies and ionized gas are bound by massive amounts of dark matter. In such unique, dense environments, galaxies move at a speed of about 1000 kilometers per second. Due to this high speed, the galaxies are exposed to high pressure from intercluster medium. As a result, the outer regions with relatively poor metallicity are stripped.

It is like the strong air resistance of air a bicycle rider experiences. In this case, the gaseous metallicities become higher because the chemical enrichment process takes place mainly in metal-rich central regions (Figure 4b). Another possibility is that the surrounding high-pressure, inter-cluster medium prevents outflowing gas from escaping from the galaxies (Figure 4c). This also results in higher gaseous metallicities of the cluster galaxies.

The research team concludes that the metallicity excess in the protocluster regions results from unique phenomena occurring in the cluster environment. The PI of this research, Mr. Rhythm Shimakawa of NAOJ and SOKENDAI (Note 2), is determined to continue studying the detailed physical properties of individual forming galaxies in the protoclusters to find clear evidence that proves this hypothesis.

This article is based on results from two research papers published in the Monthly Notices of the Royal Astronomical Society:

Rhythm Shimakawa, Tadayuki Kodama, Ken-ichi Tadaki, Ichi Tanaka, Masao Hayashi and Yusei Koyama, "Identification of the progenitors of rich clusters and member galaxies in rapid formation at z > 2", Volume 441, Issue 1, p.L1-L5, published in June 11, 2014, and

Rhythm Shimakawa, Tadayuki Kodama, Ken-ichi Tadaki, Masao Hayashi, Yusei Koyama, Ichi Tanaka "An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z>2", Volume 448, Issue 1, p.666-680, published in March 21, 2015.

M. Hayashi, "Discovery of an Ancient Celestial City Undergoing Rapid Growth: A Young Protocluster of Active Star-Forming Galaxies".


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Astronomers probe inner region of young star and its planets
Tucson AZ (SPX) Apr 23, 2015
Astronomers have probed deeper than before into a planetary system 130 light-years from Earth. The observations mark the first results of a new exoplanet survey called LEECH (LBT Exozodi Exoplanet Common Hunt), and are published in the journal Astronomy and Astrophysics. The planetary system of HR8799, a young star only 30 million years old, was the first to be directly imaged, with three ... read more


STELLAR CHEMISTRY
Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

STELLAR CHEMISTRY
Rover on the Lookout for Dust Devils

UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

STELLAR CHEMISTRY
The Mysteries of Astronautics

General Dynamics Integrates NASA's SGSS Infrastructure

India Role Model in Space Science Benefiting Common Man

Space law is no longer beyond this world

STELLAR CHEMISTRY
Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

STELLAR CHEMISTRY
Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

Liquid crystal bubbles experiment arrives at International Space Station

STELLAR CHEMISTRY
Ariane 5 gives dual lift" to the THOR 7 and SICRAL 2 satellites

Ariane 5's first launch of 2015

Sentinel-2A payload processing begins for Vega launch in June

45th Space Wing successfully launches first-ever Turkmenistan satellite

STELLAR CHEMISTRY
Titan's Atmosphere Useful In Study Of Hazy Exoplanets

Tau Ceti Probably not the next Earth

Astronomers join forces to speed discovery of habitable worlds

Robotically discovering Earth's nearest neighbors

STELLAR CHEMISTRY
Fast and accurate 3-D imaging technique to track optically trapped particles

Mechanical cloaks of invisibility - without complicated mathematics

ASC Signal To Supply Globecomm With Earth Stations and Upgrades

Reducing big data using quantum theory




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.