Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Asteroid Diversity Points to a "Snow Globe" Solar System
by Staff Writers
Cambridge MA (SPX) Jan 31, 2014


File image.

Our solar system seems like a neat and orderly place, with small, rocky worlds near the Sun and big, gaseous worlds farther out, all eight planets following orbital paths unchanged since they formed.

However, the true history of the solar system is more riotous. Giant planets migrated in and out, tossing interplanetary flotsam and jetsam far and wide. New clues to this tumultuous past come from the asteroid belt.

"We found that the giant planets shook up the asteroids like flakes in a snow globe," says lead author Francesca DeMeo, a Hubble postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics.

Millions of asteroids circle the Sun between the orbits of Mars and Jupiter, in a region known as the main asteroid belt. Traditionally, they were viewed as the pieces of a failed planet that was prevented from forming by the influence of Jupiter's powerful gravity. Their compositions seemed to vary methodically from drier to wetter, due to the drop in temperature as you move away from the Sun.

That traditional view changed as astronomers recognized that the current residents of the main asteroid belt weren't all there from the start. In the early history of our solar system the giant planets ran amok, migrating inward and outward substantially. Jupiter may have moved as close to the Sun as Mars is now. In the process, it swept the asteroid belt nearly clean, leaving only a tenth of one percent of its original population.

As the planets migrated, they stirred the contents of the solar system. Objects from as close to the Sun as Mercury, and as far out as Neptune, all collected in the main asteroid belt.

"The asteroid belt is a melting pot of objects arriving from diverse locations and backgrounds," explains DeMeo.

Using data from the Sloan Digital Sky Survey, DeMeo and co-author Benoit Carry (Paris Observatory) examined the compositions of thousands of asteroids within the main belt. They found that the asteroid belt is more diverse than previously realized, especially when you look at the smaller asteroids.

This finding has interesting implications for the history of Earth. Astronomers have theorized that long-ago asteroid impacts delivered much of the water now filling Earth's oceans. If true, the stirring provided by migrating planets may have been essential to bringing those asteroids.

This raises the question of whether an Earth-like exoplanet would also require a rain of asteroids to bring water and make it habitable. If so, then Earth-like worlds might be rarer than we thought.

The paper describing these findings appears in the January 30, 2014 issue of Nature.

.


Related Links
Harvard-Smithsonian Center for Astrophysics
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Astronomers say 'rogue' asteroids often found where they don't belong
Cambridge, Mass. (UPI) Jan 29, 2013
"Rogue" asteroids - space rocks with compositions at odds with their position in the solar system - may be the norm, not the exception, U.S. astronomers say. Many scientists had long believed the solar system's asteroid population was essentially static - those that formed near the sun remained near the sun, while those that formed farther out stayed on the outskirts. But in th ... read more


IRON AND ICE
NASA's LRO Snaps a Picture of NASA's LADEE Spacecraft

Sole camera from NASA moon missions to be auctioned

New results on the geologic characteristics of the Chang'e-3 exploration region

China's moon rover experiences abnormality

IRON AND ICE
Curiosity Mars Rover Checking Possible Smoother Route

Work on Mystery Rock Continues As Rover Marks 10

NASA Mars Rover's View of Possible Westward Route

NASA Mars project: radiation risk of highest concern

IRON AND ICE
Russian Space Farmers Harvest Wheat, Peas and Greens

Future interplanetary spacecraft to be equipped with 'plantations'

FAA Grants Waypoint 2 Space Safety Approval Of Training Programs

British astronaut says space travel vital to survival of human race

IRON AND ICE
Waiting for Yutu

Moon plays trick on Jade Rabbit

'Goodnight, humans': Says Yutu As The Sun Sets

Extra Time for Tiangong

IRON AND ICE
NASA Extends Reliance on Russian Spacecraft Until 2018

British firm says its space station cameras to provide Web images

Russia plans three spacewalks from ISS in 2014 - Energia

Space Station 2024 Extension Expands Economic and Research Horizons

IRON AND ICE
Both payloads for Arianespace's next Ariane 5 flight are mated to the launcher

45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

IRON AND ICE
NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries

First Weather Map of Brown Dwarf

Astronomers create first map of weather on nearby brown dwarf star

ALMA Discovers a Formation Site of a Giant Planetary System

IRON AND ICE
Microwires as mobile phone sensors

New NASA Laser Technology Reveals How Ice Measures Up

Highly Efficient Broadband Terahertz Radiation from Metamaterials

Chameleon of the sea reveals its secrets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement