Subscribe free to our newsletters via your
. 24/7 Space News .




TECTONICS
Ascent or no ascent
by Staff Writers
Potsdam, Germany (SPX) Apr 30, 2015


File image: mantle plume.

Gigantic volumes of hot material rising from the deep earth's mantle to the base of the lithosphere have shaped the face of our planet. Provided they have a sufficient volume, they can lead to break-up of continents or cause mass extinction events in certain periods of the Earth's history. So far it was assumed that because of their high temperatures those bodies - called mantle plumes - ascend directly from the bottom of the earth's mantle to the lithosphere.

In the most recent volume of Nature Communications, a team of researchers from the Geodynamic Modeling Section of German Research Centre for Geosciences GFZ explains possible barriers for the ascent of these mantle plumes and under which conditions the hot material can still reach the surface. In addition, the researchers resolve major conflicts surrounding present model predictions.

The largest magmatic events on Earth are caused by massive melting of ascending large volumes of hot material from the Earth's interior. The surface manifestations of these events in Earth's history are still visible in form of the basaltic rocks of Large Igneous Provinces.

The prevailing concept of mantle plumes so far was that because of their high temperatures, they have strongly positive buoyancy that causes them to ascend and uplift the overlying Earth's surface by more than one kilometer.

In addition, it was assumed that these mantle plumes are mushroom-shaped with a large bulbous head and a much thinner tail with a radius of only 100 km, acting as an ascent channel for new material. But here is the problem: In many cases, this concept does not agree with geological and geophysical observations, which report much wider zones of ascending material and much smaller surface uplift.

The solution is to incorporate observations from plate tectonics: In many places on the Earth's surface, such as in the subduction zones around the Pacific, ocean floor sinks down into the Earth's mantle. Apparently, this material descends up to a great depth in the Earth's mantle over several millions of years.

This former ocean floor has a different chemical composition than the surrounding Earth's mantle, leading to a higher density. If this material is entrained by mantle plumes, which is indicated by geochemical analyses of the rocks of Large Igneous Provinces, the buoyancy of the plume will decrease. However, this opens up the question if this hot material is still buoyant enough to rise all the way from the bottom of the Earth's mantle to the surface.

GFZ-researcher Juliane Dannberg: "Our computer simulations show that on the one hand, the temperature difference between the plume and the surrounding mantle has to be high enough to trigger the ascent of the plume. On the other hand, a minimum volume is required to cross a region in the upper mantle where the prevailing pressures and temperatures lead to minerals with a much higher density than the surrounding rocks."

Under these conditions, mantles plumes with very low buoyancy can develop, preventing them from causing massive volcanism and environmental catastrophes, but instead making them pond inside of the Earth's mantle.

However, mantle plumes that are able to ascend through the whole mantle are much wider, remain in the Earth's mantle for hundreds of millions of years and only uplift the surface by a few hundred meters, which agrees with observations.

Dannberg, J. and Sobolev, S.V., "Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept", Nature Communications, 24.04.2015, doi: 10.1038/ncomms7960; A figure of the flood basalts that ascended through the Earth's crust and reached the surface in Siberia can be found here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
Quake-prone Nepal: key questions and answers
Paris (AFP) April 26, 2015
Located on a major faultline dividing the Indian and Eurasian plates, quake-prone Nepal is set to suffer more aftershocks in the coming months, some of which might be major, experts say. Here are answers to some key questions that have emerged since the Saturday quake that killed over 2,500 people, sowing terror and reducing buildings to rubble. Q: What caused the April 25 earthquake? ... read more


TECTONICS
Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

Japan planning moon mission: space agency

TECTONICS
UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

TECTONICS
Space law is no longer beyond this world

Ramping Up For Johnson's Chamber A Test

Space icon reflects on origins of space program

Russia vows to put Russian cosmonauts on Moon no later than 2030

TECTONICS
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

TECTONICS
Liquid crystal bubbles experiment arrives at International Space Station

Sixth SpaceX Delivery of Station Research With a Side of Caffeine

Research for One-Year Space Station Mission Launched On Falcon 9

Astronaut Hadfield to release first space album

TECTONICS
Ariane 5 reaches the launch zone for next heavy-lift mission

Sentinel-2A arrives for Ariane Vega mission

Arianespace Flight VA222: THOR 7 and SICRAL 2 - launch delayed

SpaceX Dragon cargo ship arrives at space station

TECTONICS
First exoplanet visible light spectrum

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

TECTONICS
Perseverance paves way for wind laser

Electron spin brings order to high entropy alloys

MIPT researchers grow cardiac tissue on 'spider silk' substrate

Autonomous convergence and divergence of self-powered soft liquid metals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.