Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Warmer Soil Will Expel Less Carbon To Atmosphere Than Modeled
by Staff Writers
Berkeley CA (SPX) Nov 18, 2014


The soil above the Arctic Circle near Barrow, Alaska contains a tremendous amount of carbon. New research may help scientists better predict how much of this carbon will be released as the climate warms.

Here's another reason to pay close attention to microbes: Current climate models probably overestimate the amount of carbon that will be released from soil into the atmosphere as global temperatures rise, according to research from the US Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). The findings are from a new computer model that explores the feedbacks between soil carbon and climate change.

It's the first such model to include several physiologically realistic representations of how soil microbes break down organic matter, a process that annually unleashes about ten times as much carbon into the atmosphere as fossil fuel emissions.

In contrast, today's models include a simplistic representation of microbial behavior. The research is published Nov. 17 on the website of the journal Nature Climate Change. Based on their results, the Berkeley Lab scientists recommend that future Earth system models include a more nuanced and dynamic depiction of how soil microbes go about the business of degrading organic matter and freeing up carbon.

This approach could help scientists more accurately predict what will happen to soil carbon as Earth's climate changes. These predictions are especially important in vulnerable regions like the Arctic, which is expected to warm considerably this century, and which holds a vast amount of carbon in the tundra.

"We know that microbes are the agents of change when it comes to decomposing organic matter. But the question is: How important is it to explicitly quantify complex microbial interactions in climate models?" says Jinyun Tang, a scientist in Berkeley Lab's Earth Sciences Division who conducted the research with fellow Berkeley Lab scientist William Riley.

"We found that it makes a big difference," Tang says. "We showed that warming temperatures would return less soil carbon to the atmosphere than current models predict."

Terrestrial ecosystems, such as the Arctic tundra and Amazon rainforest, contain a huge amount of carbon in organic matter such as decaying plant material.

Thanks to soil microbes that break down organic matter, these ecosystems also contribute a huge amount of carbon to the atmosphere. Because soil is such a major player in the carbon cycle, even a small change in the amount of carbon it releases can have a big affect on atmospheric carbon concentrations.

This dynamic implies that climate models should represent soil-carbon processes as accurately as possible. But here's the problem: Numerous empirical experiments have shown that the ways in which soil microbes decompose organic matter, and respond to changes in temperature, vary over time and from place to place. This variability is not captured in today's ecosystem models, however. Microbes are depicted statically.

They respond instantaneously when they're perturbed, and then revert back as if nothing happened. To better portray the variability of the microbial world, Tang and Riley developed a numerical model that quantifies the costs incurred by microbes to respire, grow, and consume energy. Their model accounts for internal physiology, such as the production of enzymes that help microbes break down organic matter.

It includes external processes, such as the competition for these enzymes once they're outside the microbe. Some enzymes adsorb onto mineral surfaces, which means they are not available to chew through organic matter. The model also includes competition between different microbial populations.

Together, these interactions-from enzymes to minerals to populations-represent microbial networks as ever-changing systems, much like what's observed in experiments. The result? When the model was subjected to a 4 degrees Celsius change, it predicted more variable but weaker soil-carbon and climate feedbacks than current approaches.

"There's less carbon flux to the atmosphere in response to warming," says Riley. "Our representation is more complex, which has benefits in that it's likely more accurate. But it also has costs, in that the parameters used in the model need to be further studied and quantified."

Tang and Riley recommend more research be conducted on these microbial and mineral interactions. They also recommend that these features ultimately be included in next-generation Earth system models, such as the Department of Energy's Accelerated Climate Modeling for Energy, or ACME. The research was supported by the Department of Energy's Office of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory (Berkeley Lab)
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Scientists X-ray tiny cell organelles responsible for carbon fixation
Uppsala, Sweden (SPX) Nov 18, 2014
An international team of scientists led by Uppsala University has developed a high-throughput method of imaging biological particles using an X-ray laser. The images show projections of the carboxysome particle, a delicate and tiny cell compartment in photosynthetic bacteria. The experiment, described in a paper published in the scientific journal Nature Photonics, represents a major miles ... read more


CARBON WORLDS
U.K. group to crowd-source funding for moon mission

After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

CARBON WORLDS
Mars was warm enough for flowing water, but only briefly

Several Drives Push Opportunity Over 41-Kilometer Mark

Second Time Through, Mars Rover Examines Chosen Rocks

Lockheed Martin Begins Final Assembly Of Next Mars Lander

CARBON WORLDS
Astronauts to get 'ISSpresso' coffee machine

Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

Study Investigates How Men and Women Adapt Differently to Spaceflight

CARBON WORLDS
China launches new remote sensing satellite

China expects to introduce space law around 2020

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

CARBON WORLDS
Space station gets zero-gravity 3-D printer

NASA Commercial Crew Partners Continue System Advancements

Europe's 3D printer set for ISS

Astronaut turned Twitter star, Reid Wiseman, back on Earth

CARBON WORLDS
China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Time-lapse video shows Orion's move to Cape Canaveral launch pad

SpaceX chief Musk confirms Internet satellite plan

CARBON WORLDS
Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ADS primes ESA's CHEOPS to detect and classify exoplanets

NASA's TESS Mission Cleared for Next Development Phase

CARBON WORLDS
A new approach to the delivery of satellites to orbit

An efficient method to measure residual stress in 3D printed parts

Boeing Stacks Two Satellites to Launch as a Pair

Swedish military gets upgraded radar facilityw/lll




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.