Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
An essential step toward printing living tissues
by Staff Writers
Boston MA (SPX) Feb 21, 2014


A new 3-D printing method developed by Wyss Core Faculty member Jennifer Lewis and her team uses multiple print heads and customized "inks" to create complex living tissue constructs, complete with tiny blood vessels. To see how it works, visit http://wyss.harvard.edu/. Image courtesy Wyss Institute and Harvard School of Engineering and Applied Sciences.

A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard School of Engineering and Applied Sciences (SEAS) creates intricately patterned 3D tissue constructs with multiple types of cells and tiny blood vessels. The work represents a major step toward a longstanding goal of tissue engineers: creating human tissue constructs realistic enough to test drug safety and effectiveness.

The method also represents an early but important step toward building fully functional replacements for injured or diseased tissue that can be designed from CAT scan data using computer-aided design (CAD), printed in 3D at the push of a button, and used by surgeons to repair or replace damaged tissue.

"This is the foundational step toward creating 3D living tissue," said Jennifer Lewis, Ph.D., senior author of the study, who is a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard University, and the Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. Along with lead author David Kolesky, a graduate student in SEAS and the Wyss Institute, her team reported the results February 18 in the journal Advanced Materials.

Tissue engineers have tried for years to produce lab-grown vascularized human tissues robust enough to serve as replacements for damaged human tissue. Others have printed human tissue before, but they have been limited to thin slices of tissue about a third as thick as a dime. When scientists try to print thicker layers of tissue, cells on the interior starve for oxygen and nutrients, and have no good way of removing carbon dioxide and other waste. So they suffocate and die.

Nature gets around this problem by permeating tissue with a network of tiny, thin-walled blood vessels that nourish the tissue and remove waste, so Kolesky and Lewis set out to mimic this key function.

3D printing excels at creating intricately detailed 3D structures, typically from inert materials like plastic or metal. In the past, Lewis and her team have pioneered a broad range of novel inks that solidify into materials with useful electrical and mechanical properties. These inks enable 3D printing to go beyond form to embed functionality.

To print 3D tissue constructs with a predefined pattern, the researchers needed functional inks with useful biological properties, so they developed several "bio-inks" - tissue-friendly inks containing key ingredients of living tissues. One ink contained extracellular matrix, the biological material that knits cells into tissues. A second ink contained both extracellular matrix and living cells.

To create blood vessels, they developed a third ink with an unusual property: it melts as it is cools, rather than as it warms. This allowed the scientists to first print an interconnected network of filaments, then melt them by chilling the material and suction the liquid out to create a network of hollow tubes, or vessels.

The Harvard team then road-tested the method to assess its power and versatility. They printed 3D tissue constructs with a variety of architectures, culminating in an intricately patterned construct containing blood vessels and three different types of cells - a structure approaching the complexity of solid tissues.

Moreover, when they injected human endothelial cells into the vascular network, those cells regrew the blood-vessel lining. Keeping cells alive and growing in the tissue construct represents an important step toward printing human tissues. "Ideally, we want biology to do as much of the job of as possible," Lewis said.

Lewis and her team are now focused on creating functional 3D tissues that are realistic enough to screen drugs for safety and effectiveness. "That's where the immediate potential for impact is," Lewis said.

Scientists could also use the printed tissue constructs to shed light on activities of living tissue that require complex architecture, such as wound healing, blood vessel growth, or tumor development.

"Tissue engineers have been waiting for a method like this," said Don Ingber, M.D., Ph.D., Wyss Institute Founding Director. "The ability to form functional vascular networks in 3D tissues before they are implanted not only enables thicker tissues to be formed, it also raises the possibility of surgically connecting these networks to the natural vasculature to promote immediate perfusion of the implanted tissue, which should greatly increase their engraftment and survival".

In addition to Lewis and Kolesky, the Wyss Institute research team also included Ryan L. Truby, A. Sydney Gladman, Travis A. Busbee, SEAS graduate students, and Kimberly A. Homan, Ph.D., a postdoctoral fellow at SEAS. The work was funded by the Wyss Institute for Biologically Inspired Engineering and the Harvard Materials Research Science and Engineering Center.

.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Hand-held scanner used to make 3-D maps of crime scenes
Canberra, Australia (UPI) Feb 14, 2013
A new scanner allows police to build 3-D crime scene maps that could help illustrate those scenes to juries, Australian researchers say. Developed by the Commonwealth Scientific and Industrial Research Organization, the handheld Zebedee scanner uses a powerful laser to sweep an environment and create a 3-D computer map accurate to fractions of an inch, Britain's the Guardian reported Fr ... read more


TECH SPACE
Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

Chang'e-2 lunar probe travels 70 mln km

LADEE Sends Its First Images of the Moon Back to Earth

TECH SPACE
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

TECH SPACE
Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

Boeing Commercial Crew Program Passes NASA Hardware, Software Reviews

TECH SPACE
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

TECH SPACE
NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

TECH SPACE
Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

New Russian Rocket Mock-Up Rolls Out to Launch Pad

ILS Proton Successfully Launches TURKSAT-4A for Turksat

TECH SPACE
ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

Scientist: Exoplanet research needs less hype, more patience

Europe sets plans for 2024 planet-hunting mission

TECH SPACE
How to catch a satellite

Using Holograms to Improve Electronic Devices

Google shows prototype phone that creates 3-D maps of its surroundings

An essential step toward printing living tissues




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.