|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Boston MA (SPX) Nov 15, 2015
At the Siggraph Asia conference this week, MIT researchers presented a pair of papers describing techniques for either magnifying or smoothing out small variations in digital images. The techniques could be used to produce more polished images for graphic-design projects, or, applied in the opposite direction, they could disclose structural defects, camouflaged objects, or movements invisible to the naked eye that could be of scientific interest. Conceptually, the work builds on a long line of research from several groups in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), which sought to amplify minute motions in digital video. "In motion magnification, the deviations are over time, and the model is deviation from being perfectly static," says Tali Dekel, a postdoc in CSAIL and a co-author on both papers. "Our method takes as input only a single image, and it looks for deviation in space. We don't need to know time history to do that." One of the two papers, on which Dekel is first author, presents an algorithm that looks for repeated forms within an image, such as the kernels of an ear of corn or bricks in a wall. It can then iron out differences across the image, producing idealized but still natural-looking corn ears or brick walls, or amplify the differences, making them more evident to the naked eye. The algorithm works with color as well as shape. So, for instance, it can take an image in which a chameleon is concealed against the trunk of a tree and enhance subtle color differences so that the chameleon stands out blue against an orange background. Joining Dekel on that paper are professor of computer science and engineering William Freeman, whose group she's a member of, and colleagues from Israel's Technion and Weizmann Institute.
Imperfect form In other experiments, the algorithm was able to identify a rippling in Saturn's rings that could offer information about the orbital pattern of the planet's moons, and by magnifying changes to a regular pattern projected on a screen behind a candle, it revealed thermal variations caused by the candle's flame. The first author on that paper is Neal Wadhwa, another MIT graduate student in electrical engineering and computer science. Joining him are Dekel, Freeman, graduate student Donglai Wei, and Fredo Durand, a professor of computer science and engineering. The first algorithm - the one that recognizes repeated forms - begins by comparing patches of the source image, at different scales, and identifying those that seem to be visually similar. Then it averages out all the visually similar patches and uses the averages to construct a new, highly regular version of the image. This image may look unnatural, but its purpose is just to serve as an initial target. Then the algorithm identifies a mathematical function that moves the pixels of the source image around, producing the best possible approximation of the target image. From that function, it creates a new target image. It then iterates back and forth, producing ever more natural-looking target images and ever more regular mathematical transformations, until the two converge. Once the algorithm has a function that produces a regular image, it can simply invert it to produce a more distorted image.
Implications If it's implemented particularly aggressively, it can even cut irregularities out of an image - for instance, standardizing the size and shape of the cells of a honeycomb while deleting the bees crawling over it. As such, it could be a useful resource for image-manipulation programs like Photoshop. In materials science, a standard technique for identifying defects in a material's surface is to cover it with tiny soap bubbles and look for irregularities. The MIT researchers are also collaborating with materials scientists to use their algorithm to enhance that process. The second algorithm uses existing techniques to identify the geometric shapes indicated by color gradations in an image. Then it excises a narrow band of the image that traces the curve defining each of those shapes. It then straightens the bands out, creating a uniform representation of all the shapes in the image. At regular intervals, it considers local variations in color across the width of each band. These will typically vary, indicating deviations from the idealized geometry of the initial curve. From those deviations, the algorithm constructs a new, more erratic curve, which it can exaggerate and then reinsert into the image.
Related Links Massachusetts Institute of Technology Satellite-based Internet technologies
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |