Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Aldrich Materials Science discovers liquid-free preparation of metal organic frameworks
by Staff Writers
St. Louis, MO (SPX) Dec 24, 2012


Illustration only.

Researchers at Aldrich Materials Science, a strategic technology initiative of Sigma-Aldrich Corporation have discovered an innovative way to design an important class of three-dimensional (3D) hybrid structures, Metal Organic Frameworks (MOFs), under completely liquid-free conditions. High purity MOF products prepared by the liquid-free process may be ideally suited as rare earth containing materials for sensors and detectors, electronic or magnetic materials.

The discovery also extends liquid-free preparation techniques to a large new class of 3D-structured materials and is expected to lead to new products with unique properties and suitability for applications heretofore unknown.

A report of the Aldrich-developed procedure was recently published in the prominent peer-reviewed journal, Chemical Communications. Drs. Niraj Singh, Meenakshi Hardi and Viktor Balema from the Aldrich Hard Materials Center of Excellence demonstrated the synthesis of Y-MOF (MIL-78) using a room-temperature ball-milling process in the absence of a solvent or liquid grinding additive.

In the process, yttrium hydride was ball-milled with solid high-melting trimesic acid to form Y-MOF (MIL-78). Gaseous hydrogen was the only by-product observed in the process. The liquid-free synthesis process yields MOF products of exceptional purity by preventing contamination from solvents and liquid residues.

Metal Organic Frameworks (MOFs) are an attractive class of highly ordered materials built by combining multi-functional organic molecules (linkers) and metal ions into a 3D network.

The well-defined, highly-ordered, and readily-controlled structure of MOFs can be exploited in a diverse range of applications including gas storage, separations, catalysis, sensors and drug delivery. The presence of modifiable organic linkers in the MOF structure enables tunability of function and customization of end use.

Current routes to MOF materials typically rely on solution-based processes in which the organic linker and the metal source - a metal salt, carbonate or oxide - are partially or fully dissolved in an appropriate solvent and reacted. The reaction can occur in a tightly closed vessel at high temperature or by subjecting the solution to microwaves, ultrasound or electrochemical treatment.

Metal-organic framework materials can also be prepared by milling solid-phase metal derivatives and solid-phase organic linkers in the presence of a liquid, which can be included as an additive with the initial solid-phase reaction mixture or generated in situ as a byproduct during the milling process.

Although often asserted to be "solid-state," such processes necessarily involve liquid components, which can act as liquid micro-reactors that control the reaction process and promote the formation of MOFs by the conventional solution-based mechanism.

Until the discovery, it was uncertain whether MOF materials could be prepared in a completely liquid-free environment and whether new types of MOF materials and MOF materials of the purity required for many high-tech applications could be prepared in a cost-effective process.

"Excluding liquids from the preparation finally opens the way to making MOF materials whose properties are not influenced by the presence of contaminants and, therefore, may be quite different from those of conventional MOFs.

"Our approach also avoids the use of solvents, which are often harmful to the environment, difficult to remove from the extended 3D networks of the targeted MOF product materials, and detrimental to the performance of MOF materials in many applications." said Dr. Viktor Balema, Manager of the Aldrich Hard Materials Center of Excellence.

Dr. Balema further noted that "Aldrich's process should enable generation of unique hybrid structures with non-conventional properties applicable in numerous areas of modern science and technology, which extend from energy generation and storage to electronics and bio-technology."

Prior to journal publication, Aldrich Materials Science filed a provisional patent application for the newly discovered procedure with the US Patent Office.

"This discovery exemplifies the work being done at the Hard Materials Center of Excellence. Through this Center along with the Polymer Center of Excellence, we seek to enable innovation through new product additions to our materials portfolio, collaborations, technology licensing, custom research, process development and scale-up," commented Dr. Shashi Jasty, Director, Aldrich Materials Science.

.


Related Links
Impress Labs
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Clean air: New paints break down nitrogen oxides
Schmallenberg, Germany (SPX) Dec 24, 2012
Surfaces with photo-catalytic characteristics clean the air off nitrogen oxides and other health-endangering substances. Using a new test procedure, Fraunhofer researchers can find out how the coatings behave during a long-term test. The Seventies: Smog alert in the Ruhr area, acid rain, dying spruce trees in the Bavarian Forest. In those days, the solution was filter systems for the smoke ... read more


TECH SPACE
GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

No plans of sending an Indian on moon

Rocket Burn Sets Stage for Dynamic Moon Duos' Lunar Impact

TECH SPACE
Clays on Mars: More Plentiful Than Expected

Opportunity For Some Shoulder Workout At Copper Cliff

Enabling ChemCam to Measure Key Isotopic Ratios on Mars and Other Planets

Curiosity Rover Explores 'Yellowknife Bay'

TECH SPACE
NASA Puts Orion Backup Parachutes to the Test

White House to honor scientists, inventors

TDRS-K Arrives at Kennedy for Launch Processing

Sierra Nevada Corporation Selected by NASA to Receive Human Spaceflight Certification Products Contract

TECH SPACE
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

TECH SPACE
Expedition 34 Spends Christmas in Space

Three astronauts blast off for ISS in Russian craft

Soyuz rocket brings trio to space station

ISS Orbit Raised Ahead of Crew Arrival

TECH SPACE
Ariane 5 ECA orbits Skynet 5D and Mexsat Bicentenario satellites

Payload integration complete for final 2012 Ariane 5 mission

Arctic town eyes future as Europe's gateway to space

ISRO planning 10 space missions in 2013

TECH SPACE
Closest sun-like star may have planets

Nearby star is good candidate for Earth-like planets

Venus transit and lunar mirror could help astronomers find worlds around other stars

Astronomers discover and 'weigh' infant solar system

TECH SPACE
Berkeley Lab Scientists Developing Quick Way to ID People Exposed to Ionizing Radiation

All Systems Go for Highest Altitude Supercomputer

Space Fence program moving forward

Aldrich Materials Science discovers liquid-free preparation of metal organic frameworks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement