Subscribe free to our newsletters via your
. 24/7 Space News .




AEROSPACE
Airplane Plus Heat Plus Ice Equals Mystery
by Jim Banke for NASA Aeronautics Research Mission Directorate
Washington DC (SPX) Aug 19, 2011


This Gulfstream 2 business jet is being outfitted over the next few months with special sensors to probe cloud properties during the High Ice Water Content experiments. Image credit: NASA

It's difficult to believe that an airplane flying in the tropics in the summer could have an engine fill up with ice, freeze, and shut down. But the phenomenon, known as engine core ice accretion, has happened more than 150 times since 1988 - frequently enough to attract the attention of NASA aviation safety experts, who are preparing a flight campaign in northern Australia to learn more about this occasional hazard and what can be done to prevent it.

"It's not happening in one particular type of engine and it's not happening on one particular type of airframe," said Tom Ratvasky, an icing flight research engineer at NASA's Glenn Research Center in Cleveland. "The problem can be found on aircraft as big as large commercial airliners, all the way down to business-sized jet aircraft." And it has happened at altitudes up to 41,000 feet.

No accident has been attributed to the phenomenon in the 23 years since it was identified, but there have been some harrowing moments in the air. In most of the known cases, pilots have managed to restore engine power and reach their destinations without further problems. According to the Federal Aviation Administration, there have been two forced landings.

For example, in 2005, both engines of a Beechcraft business jet failed at 38,000 feet above Jacksonville, Fla. The pilot glided the aircraft to an airport, dodging thunderstorms and ominous clouds on the way down. Engine core ice accretion was to blame.

Little is understood about ice crystal properties at high altitude and how ice accumulates inside engines. The engines may be toasty warm inside at such heights, but the air outside is frosty cold.

The prevailing theory holds the trouble occurs around tropical storms in which strong convection currents move moist air from low altitudes to high altitudes where the local temperatures are very cold, creating high concentrations of ice crystals. But the properties of the ice crystals, such as their size and how many of them are in a given volume of air, are a mystery - one that an international research team led by NASA aims to solve.

The FAA has proposed new certification standards for engines that will be operated in atmospheric conditions that generate ice crystals. The rules will take effect next year, just as the NASA team heads to Darwin, Australia, aboard an aircraft specially equipped with instruments to study cloud physics during the Southern Hemisphere summer. Analyses of the Darwin flight tests and additional tests in ground-based facilities in the United States and Canada will provide the FAA the means for ensuring compliance with the new standards.

"We need to understand what that environment is out there and, even though it may be a rare case, be able to fly through those icing conditions unscathed. Or if we can find ways of detecting this condition and keep aircraft out of it, that's something we're interested in doing," Ratvasky said.

Researchers explain the phenomenon this way: Small ice crystals found in storm clouds get sucked into the core of an aircraft engine, where the pressure is high and the temperature is warm. Some of the ice melts and covers the warm engine parts with a thin film of water that traps additional ice crystals.

The super-cooled water chills the engine components enough that ice can accumulate on them. If the built-up ice breaks away in chunks it can damage compressor blades, reduce the power level, or snuff out the engine altogether.

For the flight research, NASA is outfitting a Gulfstream 2 business jet with more than 20 meteorological sensors that will be used to probe cloud properties, such as water content and the size and concentration of ice particles, which can lead to engine and air data sensor failures that threaten aviation safety.

The data gathered will aid scientists' understanding of cloud growth processes, help them create reliable detection methods and realistic ground-based simulations, and provide a foundation for possible new aircraft design and certification standards. FAA can use what the team learns over the course of its research project to verify the range of atmospheric conditions addressed in the new standards.

The flight campaign has three primary goals:

+ Characterize the range of environmental conditions in which internal engine icing can take place, with an emphasis on how much water or ice is present in a given volume of air.

+ Determine how to identify geographic regions where such weather threatens and ways to detect the conditions in real time in order to develop guidance that pilots can use to avoid the hazard.

+ Collect enough data to enable researchers to simulate the weather conditions for aircraft engine tests in ground facilities such as Glenn's Propulsion Systems Laboratory.

"Our plan is to study the weather patterns that lead to these conditions, not to test a particular engine configuration. We do not plan to intentionally cause our engines to have an icing event," Ratvasky said.

The Propulsion Systems Laboratory recently underwent upgrades to equip it for ground-based simulations of high-altitude icing conditions. Work to transform the Gulfstream 2 into a working airborne science laboratory is under way at a NASA contractor site, Flight Test Associates in Mojave, Calif., and will be completed early in 2012. Engineers will mount six instruments on each wing and additional instruments on the fuselage to measure cloud particle size and shape and water content, whether the particles are liquid or crystal, and the speed of the updraft as cloud particles form.

The research team - with representatives from FAA, The Boeing Company, the U.S. National Center for Atmospheric Research, Environment Canada, the National Research Council of Canada, Transport Canada, Airbus and the Australian Bureau of Meteorology - will conduct trial runs during the monsoon season in February and March 2012, develop findings and address lessons learned, and then return in January through March 2013 for the primary flight campaign.

The team chose Darwin for several reasons: its ground-based weather observing systems are the best in the tropics, there will be plenty of storms to sample, there is plenty of data from previous atmospheric characterization efforts with which to compare, and the Southeast Asia region has seen a large number of engine power-loss events.

.


Related Links
-
Aerospace News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








AEROSPACE
Cathay Pacific first-half net profit falls 59%
Hong Kong (AFP) Aug 10, 2011
Cathay Pacific said on Wednesday net profit tumbled in the first six months of the year but added it would push on with its expansion plans by ordering 12 aircraft from Boeing worth more than $3 billion. The Hong Kong-based carrier said it earned HK$2.8 billion ($359 million) in January-June, 59 percent below the HK$6.84 billion a year earlier due to soaring fuel prices as well as impact of ... read more


AEROSPACE
GRAIL Moon Twins are Joined to Their Booster

Moon younger than previously thought

GRAIL Launch Less Than One Month Away

The Lunar Farside And The Ancient Big Splat

AEROSPACE
France, Russia talk of Mars mission

Possibility of Mars microbial life eyed

Arrival in the Arctic

Opportunity Reaches Endeavour Crater

AEROSPACE
NASA Selects XCOR to Participate in Suborbital Flight Contract

NASA Selects Seven Firms To Provide Near-Space Flight Services

NASA moves forward in manned spaceflight

Russia space chief regrets focus on manned missions

AEROSPACE
China satellite aborts mission after 'malfunction'

Pausing for Tiangong

Chinese orbiter fails to enter designated orbit due to rocket malfunction

No Toilet for Tiangong

AEROSPACE
First 3D video transmission live from space

Robotic Refueling Module, Soon To Be Relocated to Permanent Space Station Position

SpaceX plans November test flight to space station

Crew Stows Spacesuits, Completes Robotics Checkout

AEROSPACE
Russia loses contact with new satellite

China successfully launches maritime satellite

NASA selects Virgin Galactic for Suborbital Flights

Arabsat-5C is welcomed in French Guiana for Arianespace's next Ariane 5 launch

AEROSPACE
Stellar eclipse gives glimpse of exoplanet

Alien World is Blacker than Coal

Strange planet is blacker than coal

Exoplanet Aurora Makes For An Out-of-this-World Sight

AEROSPACE
HP surrenders as post-PC era beckons

Forecasting pipe fractures

Tests find thyroid radiation in Japanese children

First quantitative measure of radiation leaked from Fukushima reactor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement