Subscribe free to our newsletters via your
. 24/7 Space News .




INTERNET SPACE
Advanced Light Source Sets Microscopy Record
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Sep 15, 2014


David Shapiro with the STXM instrument at ALS beamline 5.3.2.1. Image courtesy Roy Kaltschmidt.

A record-setting X-ray microscopy experiment may have ushered in a new era for nanoscale imaging. Working at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab), a collaboration of researchers used low energy or "soft" X-rays to image structures only five nanometers in size.

This resolution, obtained at Berkeley Lab's Advanced Light Source (ALS), a DOE Office of Science User Facility, is the highest ever achieved with X-ray microscopy.

Using ptychography, a coherent diffractive imaging technique based on high-performance scanning transmission X-ray microscopy (STXM), the collaboration was able to map the chemical composition of lithium iron phosphate nanocrystals after partial dilithiation. The results yielded important new insights into a material of high interest for electrochemical energy storage.

"We have developed diffractive imaging methods capable of achieving a spatial resolution that cannot be matched by conventional imaging schemes," says David Shapiro, a physicist with the ALS.

"We are now entering a stage in which our X-ray microscopes are no longer limited by our optics and we can image at nearly the wavelength of our X-ray light."

Shapiro is the lead and corresponding author of a paper reporting this research in Nature Photonics. The paper is titled "Chemical composition mapping with nanometer resolution by soft X-ray microscopy." (See below for a full list of co-authors and their affiliations.)

In ptychography (pronounced tie-cog-raphee), acombination of multiple coherent diffraction measurements is used to obtain 2D or 3D maps of micron-sized objects with high resolution and sensitivity. Because of the sensitivity of soft x-rays to electronic states, ptychography can be used to image chemical phase transformations and the mechanical consequences of those transformations that a material undergoes.

"Until this work, however, the spatial resolution of ptychographic microscopes did not surpass that of the best conventional systems using X-ray zone plate lenses," says Howard Padmore, leader of the Experimental Systems Group at the ALS and a co-author of the Nature Photonics paper.

"The problem stemmed from the fact that ptychography was primarily developed on hard X-ray sources using simple pinhole optics for illumination. This resulted in a low scattering cross-section and low coherent intensity at the sample, which meant that exposure times had to be extremely long, and that mechanical and illumination stabilities were not good enough for high resolution."

Key to the success of Shapiro, and his collaborators were the use of soft X-rays which have wavelengths ranging between 1 to 10 nanometers, and a special algorithm that eliminated the effect of all incoherent background signals.

Ptychography measurements were recorded with the STXM instruments at ALS beamline 11.0.2, which uses an undulator x-ray source, and ALS beamline 5.3.2.1, which uses a bending magnet source. A coherent soft X-ray beam would be focused onto a sample and scanned in 40 nanometer increments. Diffraction data would then be recorded on an X-ray CCD (charge-coupled device) that allowed reconstruction of the sample to very high spatial resolution.

"Throughout the ptychography scans, we maintained the sample and focusing optic in relative alignment using an interferometric feedback system with a precision comparable to the wavelength of the X-ray illumination," Shapiro says.

Lithium iron phosphate is widely studied for its use as a cathode material in rechargeable lithium-ion batteries. In using their ptychography technique to map the chemical composition of lithium iron phosphate crystals, Shapiro and his collaborators found a strong correlation between structural defects and chemical phase propagation.

"Surface cracking in these crystals was expected," Shapiro says, "but there is no other means of visualizing the correlation of those cracks with chemical composition at these scales. The ability to visualize the coupling of the kinetics of a phase transformation with the mechanical consequences is critical to designing materials with ultimate durability."

Shapiro and his colleagues have already begun applying their ptychography technique to the study of catalytic and magnetic films, magnetotactic bacteria, polymer blends and green cements.

For the chemical mapping of lithium iron phosphate they used the STXM instrument at ALS beamline 5.3.2.1 which required up to 800 milliseconds of exposure to the X-ray beam for each scan. Next year, they anticipate using a new ALS beamline called COSMIC (COherent Scattering and MICroscopy), which will feature a high brightness undulator x-ray source coupled to new high-frame-rate CCD sensors that will cut beam exposure times to only a few milliseconds and provide spatial resolution at the wavelength of the radiation.

"If visible light microscopes could only achieve a resolution that was 50 times the wavelength of visible light, we would not be able to see most single celled organisms," Shapiro says. "Where would the life sciences be with such a limitation? We are now approaching the point where we will have X-ray microscopes of comparable quality to today's visible light instruments for the study of nanomaterials."

Co-authoring the Nature Photonics paper in addition to Shapiro and Padmore were Young-Sang Yu, Tolek Tyliszczak, Jordi Cabana, Rich Celestre, Weilun Chao, David Kilcoyne, Stefano Marchesini, Tony Warwick and Lee Yang of Berkeley Lab; Konstantin Kaznatcheev of Brookhaven National Laboratory; Shirley Meng of the University of San Diego; and Filipe Maia of Uppsala University in Sweden.

.


Related Links
Berkeley Lab
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





INTERNET SPACE
China demand to fuel Hong Kong iPhone grey market
Hong Kong (AFP) Sept 13, 2014
Wealthy mainland Chinese looking to buy the new iPhone 6 next week could expect to pay an eye-watering US$2,500 for the handsets in Hong Kong, following Apple's decision to delay the launch in China. Hong Kong has long been a hub for resold and refurbished phones, and delighted vendors there were coping with a flood of pre-orders from the Apple-obsessed mainland. The price, say sellers i ... read more


INTERNET SPACE
Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

INTERNET SPACE
Flash-Memory Reformat On Opportunity Underway

Mars Rover Opportunity's Vista Includes Long Tracks

MAVEN Spacecraft Makes Final Preparations For Mars

Robots do battle over Mars exploration

INTERNET SPACE
Top trends at IFA 2014, Europe's biggest gadget fair

Tech giants bet on 'smart home' revolution

More Than Meets the Eye: NASA Scientists Listen to Data

Aurora Season Has Started

INTERNET SPACE
China to launch second space lab in 2016: official

China's Space Station is Still On Track

China launches remote sensing satellite

China launches two satellites via one rocket

INTERNET SPACE
Science Continues on Orbital Lab While Trio Prepares for Departure

International Space Station accidentally launches satellites on its own

NASA Launches New Era of Earth Science from ISS

Geopolitical Tensions Not to Affect ISS Cooperation

INTERNET SPACE
MEASAT-3b and Optus 10 given go-ahead for Ariane 5 Sept 11 launch

SpaceX launches AsiaSat 6 satellite

SpaceX launches second satellite in the past month

Sea Launch Takes Proactive Steps to Address Manifest Gap

INTERNET SPACE
First evidence for water ice clouds found outside solar system

NRL Scientist Explores Birth of a Planet

How NASA's New Carbon Observatory Will Help Us Understand Alien Worlds

Orion Rocks! Pebble-Size Particles May Jump-Start Planet Formation

INTERNET SPACE
Ceramics don't have to be brittle

Hewlett-Packard buys cloud-computing firm Eucalyptus

Angling chromium to let oxygen through

Europe's new age of metals begins




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.