Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
A sharper look into the past for archaeology and climate research
by Staff Writers
Munich, Germany (SPX) Oct 23, 2012


A calibration reaching very far into the past was now possible with data from the Suigetsu Lake, located in Mikata near the Sea of Japan. Here, a drill core could be retrieved from the sediments whose seasonal resolution dates back to over 50,000 years ago.

By using a new series of measurements of radiocarbon dates on seasonally laminated sediments from Lake Suigetsu in Japan, a more precise calibration of radiocarbon dating will be possible. In combination with an accurate count of the seasonal layered deposits in the lake, the study resulted in an unprecedented precision of the known 14C method with which it is now possible to date older objects of climate research and archeology more precisely than previously achievable.

This is the result published by an international team of geoscientists led by Prof. Christopher Bronk Ramsey (University of Oxford) in the latest edition of the journal Science.

The radiocarbon method for dating organic and calcareous materials uses the known decay rates of the radioactive isotope 14C, which is formed in very small amounts in the upper atmosphere by cosmic rays. Since the formation of 14C is affected by Earth's magnetic field and solar activity and is therefore not constant, this relative time scale is has no absolute timestamp in calendar years.

The timescale developed through the measured decay rates must thus be calibrated to indicate the age in calendar years. This works best with a parallel count of annual layers in lake sediments or tree rings.

A calibration reaching very far into the past was now possible with data from the Suigetsu Lake, located in Mikata near the Sea of Japan. Here, a drill core could be retrieved from the sediments whose seasonal resolution dates back to over 50,000 years ago.

These new data are very important for both archaeological and paleoclimatic research. "With such information, one can not only improve the understanding of regional impacts of climate change, but also find the triggering mechanisms ", explains Achim Brauer, who is one of the initiators of the project and responsible for creating the time scale in calendar years of the Suigetsu sediment profile at the GFZ German Research Centre for Geosciences.

"It allows us to synchronize paleoclimatic key profiles from different regions, such as the Arctic, East Asia and Europe more accurately, in order to determine whether abrupt climate changes occurred worldwide at the same time, or whether changes in some regions can be identified as sooner than others.

The new calibration also allows a more accurate determination of the extinction times of the Neanderthals and the temporal spread of modern humans in Europe. "

The Suigetsu Lake is ideal for using both dating methods, measurement of 14C and counting of annual layers, because deciduous trees grew on its shores during the last ice age, the leaves of which were preserved in large numbers in the sediments and are ideal for 14C dating. At the same time, this lake is one of the rare cases in which annual layers have been preserved in the sediment.

Due to the long experience of Achim Brauer's working group with creating precise calendar time scales from lake sediments, the GFZ scientists were entrusted with this task. Using special microscope techniques, it was possible to decipher the detailed structure of the finest, thousands of years old layers in the Suigetsu sediments.

The scientists identified springtime layers which were formed by the melting of snow, summer layers of organic material or algae residues, fall layers of a special iron carbonate and winter layers of fine clay. The knowledge of this seasonal rhythm of sedimentation was the basis for the exact annual layer timescale.

The high quality of the new Suigetsu chronology for the period from 12500 to 52800 years before present is shown by the fact that it was selected as the basis for the next iteration of the IntCal compilation, an internationally valid composite record of radiocarbon calibration.

Christopher Bronk Ramsey et al.,"A Complete Terrestrial Radiocarbon Record for 11.2 - 52.8 kyr BP," Science, 338, (6105), 370-374, 10.1126/science.1226660

.


Related Links
Helmholtz Association of German Research Centres
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Targeting solar geoengineering to minimize risk and inequality
Cambridge MA (SPX) Oct 23, 2012
By tailoring geoengineering efforts by region and by need, a new model promises to maximize the effectiveness of solar radiation management while mitigating its potential side effects and risks. Developed by a team of leading researchers, the study was published in the November issue of Nature Climate Change. Solar geoengineering, the goal of which is to offset the global warming caused by ... read more


CLIMATE SCIENCE
European mission to search for moon water

Model reconciles Lunar Earth composition with giant impact theory

Massive planetary collision may have zapped key elements from moon

Proof at last: Moon was created in giant smashup

CLIMATE SCIENCE
Valles Marineris - the largest canyon in the Solar System

Curiosity Rover Collects Fourth Scoop of Martian Soil

How Space Station Can Help Humans Follow Curiosity to Mars and Beyond

Mars Soil Sample Delivered for Analysis Inside Rover

CLIMATE SCIENCE
NASA must reinvest in nanotechnology research, according to new Rice University paper

Austrian space diver no stranger to danger

Baumgartner feat boosts hopes for imperilled astronauts

Austrian breaks sound barrier in record space jump

CLIMATE SCIENCE
Patience for Tiangong

China launches civilian technology satellites

ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

CLIMATE SCIENCE
New ISS Crew Confirmed

Russia launches three astronauts to ISS

ISS Orbit to be Adjusted for Next Spacecraft

Crew Unloads Dragon, Finds Treats

CLIMATE SCIENCE
Brazil eyes closer space cooperation with Ukraine

S. Korea plans third rocket launch bid Friday

AFSPC commander convenes AIB

Proton Lofts Intelsat 23 For Americas, Europe and Africa Markets

CLIMATE SCIENCE
New small satellite will study super-Earths for ESA

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

Ultra-Compact Planetary System Is A Touchstone For Understanding New Planet Population

CLIMATE SCIENCE
Angkor Wat builders may have had shortcut

Taking aim at rivals, Apple unveils iPad mini

Japan firm launches real-time telephone translation

Microsoft gives peek at new Windows, tablet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement