Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
A guiding light for new directions in energy production
by Staff Writers
Lausanne, Switzerland (SPX) Sep 14, 2011


By combining nano technology with optics, bioreactors can have increased efficiency - opening new doors for clean energy production. Credit: EPFL / Greg Pasche.

The science of light and liquids has been intimately entwined since Leon Foucault discovered the speed of light in 1862, when he observed that light travels more slowly in water than in air. This physical harmony between the two materials is now being harnessed to collect and drive light to where it can be the most useful.

October's issue of Nature Photonics focuses on optofluidics, the study of microfluidics-the microscopic delivery of fluids through extremely small channels or tubes-combined with optics. In a review written by Demetri Psaltis, Dean of EPFL's School of Engineering, he and his co-authors argue that optofluidics is poised to take on one of this century's most important challenges: energy.

"By directing the light and concentrating where it can be most efficiently used, we could greatly increase the efficiency of already existing energy producing systems, such as biofuel reactors and solar cells, as well as innovate entirely new forms of energy production" explains Psaltis. "EPFL is the world leader in optofluidics, our institution is in a position to develop truly efficient and disruptive energy sources."

Sunlight is already used for energy production besides conventional solar panels. For example, it is used to convert water and carbon dioxide into methane in large industrial biofuel plants. Prisms and mirrors are commonly employed to direct and concentrate sunlight to heat water on the roofs of homes and apartment buildings.

These techniques already employ the same principles found in optofluidics-control and manipulation of light and liquid transfer-but often without the precision offered by nano and micro technology.

A futuristic example: Optofluidic solar lighting system
How can we better exploit the light that hits the outside of a building? Imagine sunlight channelled into the building An optofluidic solar lighting system could capture sunlight from a roof using a light concentrating system that follows the sun's path by changing the angle of the water's refraction, and then distribute the sunlight throughout the building through light pipes or fibre optic cables to the ceilings of office spaces, indoor solar panels, or even microfluidic air filters.

Using sunlight to drive a microfluidic air filter or aliment an indoor solar panel-which would be protected from the elements and last longer-is a novel way to use solar energy to supplement non-renewable resources.

In such a system, it would be essential to deviate from the secondary devices such as air filtrage and solar panels to maintain a comfortable constant light source for ceiling lighting-the flickering of the light source due to a cloud passing over would be intolerable.

In order to modulate these different channels to maintain a constant light source, a system using electrowetting could deviate light from one channel into another both easily and inexpensively. A droplet of water sits on the outer surface of light tube. A small current excites the ions in the water, pushing them to the edge of the droplet and expanding it just enough for it to touch the surface of another tube.

This expanded droplet then creates a light bridge between the two parallel light tubes, effectively moderating the amount of light streaming through either one.

Up-scaling for industrial use
"The main challenge optofluidics faces in the energy field is to maintain the precision of nano and micro light and fluid manipulation while creating industrial sized installations large enough to satisfy the population's energy demand," explains David Erickson, professor at Cornell University and visiting professor at EPFL.

"Much like a super computer is built out of small elements, up-scaling optofluidic technology would follow a similar model-the integration of many liquid chips to create a super-reactor."

Since most reactions in liquid channels happen at the point of contact between the liquid and the catalyst-lined tubes, the efficiency of a system depends on how much surface area is available for reactions to take place.

Scaling down the size of the channels to the micro and nano level allows for thousands more channels in the same available space, greatly increasing the overall surface area and leading to a radical reduction of the size needed (and ultimately the cost) for catalytic and other chemical reactions.

Adding a light source as a catalyst to the directed flow of individual molecules in nanotubes allows for extreme control and high efficiency.

Their review in Nature Phontonics lays out several possibilities for up-scaling optofluidics, such as using optical fibers to transport sunlight into large indoor biofuel reactors with mass-produced nanotubes.

They point out that the use of smaller spaces could increase power density and reduce operating costs; optofluidics offers flexibility when concentrating and directing sunlight for solar collection and photovoltaic panels; and by increasing surface area, the domain promises to reduce the use of surface catalysts-the most expensive element in many reactors.

Citation: Nature Photonics, Online Publication September 11 + 10.1038/nphoton.2011.209. Title: Optofluidics for energy applications Authors: David Erickson, David Sinton, Demetri Psaltis Video

.


Related Links
Ecole Polytechnique Federale de Lausanne
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Innovative superconductor fibers carry 40 times more electricity
New York NY (SPX) Sep 12, 2011
Wiring systems powered by highly-efficient superconductors have long been a dream of science, but researchers have faced such practical challenges such as finding pliable and cost-effective materials. Now researchers at Tel Aviv University have found a way to make an old idea new with the next generation of superconductors. Dr. Boaz Almog and Mishael Azoulay working in the group of Prof. G ... read more


ENERGY TECH
United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

Second bid to launch NASA's Moon-bound spacecraft

NASA to launch Moon-bound twin spacecraft

ENERGY TECH
Opportunity Continues Early Exploration Of Endeavour Crater Rim

Memorial Image Taken on Mars on September 11, 2011

Methane Debate Splits Mars Community

Orbiter Resumes Use of Camera

ENERGY TECH
NASA Offers Shuttle Tiles And Space Food To Schools And Universities

Russia delays commercial space launches after crash

Science Needs to Work Smarter To Spur Economy and Competitiveness

Space food, shuttle tiles for sale by NASA

ENERGY TECH
Tiangong 1 might be launched in late September

Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

ENERGY TECH
Russia announces launch of 2 spacecraft in Oct-Nov

Three ISS crew members scheduled to return on Friday

Russia sets first post-crash manned flight for November

NASA Sits Tight as Unmanned Space Station Considered

ENERGY TECH
NASA unveils new launcher design for Mars missions

First Galileo satellite touches down in French Guiana

European satellite in French Guiana launch

Arianespace to launch Amazonas-3 for Hispasat

ENERGY TECH
Astronomers find extreme weather on an alien world

Latest Exoplanet Haul Includes Super Earth At Habitat Zone Edge

Invisible World Discovered

The diamond planet

ENERGY TECH
Market research firm ups tablet forecast

The Sky is Falling As UARS Drops In

Microsoft previews Windows 8, stresses tablets

Northrop Grumman and CEA Demonstrate Scalable CEAFAR Next-Gen Phased Array Sensor System




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement