. 24/7 Space News .
Tropical 'Runaway Greenhouse' Provides Insight To Venus

a seriously unpleasant place
Moffett Field - May 17, 2002
A region in the western tropical Pacific Ocean may help scientists understand how Venus lost all of its water and became a 900-degree inferno. The study of this local phenomenon by NASA scientists also should help researchers understand what conditions on Earth might lead to a similar fate here.

The phenomenon, called the 'runaway greenhouse' effect, occurs when a planet absorbs more energy from the sun than it can radiate back to space. Under these circumstances, the hotter the surface temperature gets, the faster it warms up.

Scientists detect the signature of a runaway greenhouse when planetary heat loss begins to drop as surface temperature rises. Only one area on Earth -- the western Pacific 'warm pool' just northeast of Australia -- exhibits this signature.

Because the warm pool covers only a small fraction of the Earth's surface, the Earth as a whole never actually 'runs away.' However, scientists believe Venus did experience a global runaway greenhouse effect about 3 billion to 4 billion years ago.

"Soon after the planets were formed 4.5 billion years ago, Earth, Venus and Mars probably all had water. How did Earth manage to hold onto all of its water, while Venus apparently lost all of its water?" asked Maura Rabbette, Earth and planetary scientist at NASA Ames Research Center in California's Silicon Valley. "We have extensive earth science data to help address that question."

Rabbette and her co-investigators from NASA Ames, Christopher McKay, Peter Pilewskie and Richard Young, used atmospheric conditions above the Pacific Ocean, including data recorded by NASA's Earth Observing System of satellites, to create a computer model of the runaway greenhouse effect. They determined that water vapor high in the atmosphere produced the local signature of a runaway greenhouse.

At sea surface temperatures above 80 F (27 C), evaporation loads the atmosphere with a critical amount of water vapor, one of the most efficient greenhouse gases. Water vapor allows solar radiation from the sun to pass through, but it absorbs a large portion of the infrared radiation coming from the Earth.

If enough water vapor enters the troposphere, the weather layer of the atmosphere, it will trap thermal energy coming from the Earth, increasing the sea surface temperature even further.

The effect should result in a chain reaction loop where sea surface temperature increases, leading to increased atmospheric water vapor that leads to more trapped thermal energy.

This would cause the temperature increase to 'run away,' causing more and more water loss through evaporation from the ocean. Luckily for Earth, sea surface temperatures never reach more than about 87 F (30.5 C), and so the runaway phenomenon does not occur.

"It's very intriguing. What is limiting this effect over the warm pool of the Pacific?" asked Young, a planetary scientist. He suggests that cloud cover may affect how much energy reaches or escapes Earth, or that the ocean and atmosphere may transport trapped energy away from the local hotspot.

"If we can model the outgoing energy flux, then maybe we can begin to understand what limits sea surface temperature on Earth," he said. The Ames researchers are not the first to study the phenomenon, but no consensus has been reached regarding the energy turnover or the limitation of sea surface temperature.

Rabbette analyzed clear-sky data above the tropical Pacific from March 2000 to July 2001. She determined that water vapor above 5 kilometers (3 miles) altitude in the atmosphere contributes significantly to the runaway greenhouse signature.

Rabbette also found that at 9 kilometers (5.6 miles) above the Pacific warm pool, the relative humidity in the atmosphere can be greater than 70 percent -- more than three times the normal range.

In nearby regions of the Pacific where the sea surface temperature is just a few degrees cooler, the atmospheric relative humidity is only 20 percent. These drier regions of the neighboring atmosphere may contribute to stabilizing the local runaway greenhouse effect, Rabbette said.

It is important to note that the Ames team uses real climate information such as relative humidity and temperature -- not hypothetical numbers -- in the Moderate Resolution Atmospheric Radiative Transfer, or MODTRAN, modeling program. The program calculates how much energy escapes back to space from the top of Earth's atmosphere.

The researchers plan to experiment with the model to test the runaway greenhouse signature's sensitivity to climate conditions. By varying the abundance of other greenhouse gases such as carbon dioxide and by adding clouds in the model, they will see the overall effect on the outgoing energy.

The model may help researchers uncover why Venus experienced a complete runaway greenhouse and lost its water over a period of several hundred million to a billion years. The research may also help determine which planets in the so-called 'habitable zone' of a solar system might lack water, an essential ingredient for life as we know it.

Related Links
NASA Ames Research Center
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Preparing For The Venus Express
Bristol - Apr 10, 2002
The European Space Agency is planning its first mission to unveil the mysteries of Earth's cloud-shrouded sister planet, Venus. On Wednesday 10 April, Professor Fred Taylor (University of Oxford) will be explaining to the UK National Astronomy Meeting why European scientists are hoping to be on board the Venus Express in 2005.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.