. 24/7 Space News .
Ensuring Quick Identification Of Radioactive Isotopes

Radionuclides in a solution are then stippled as tiny dots on a platinum disk and then flamed over a Bunsen burner to evaporate out the liquids. The disk is then place in an alpha spectrometer where the radionuclides are finally identified.
New York - Sep 11, 2003
One nightmare scenario: a terrorist dirty bomb is detonated in a major metropolitan area. Everyone's first question is "Who did it?".

One piece of the puzzle that would give law enforcement officials a head start in their search for potential suspects would be an accurate description of what radioactive materials are contained in the bomb debris. Standard isotope identification technology is relatively slow; the process can take 24 hours or more.

Now a team of Los Alamos National Laboratory scientists has developed a new quick screening methodology to identify isotopes in dirty bomb debris, a procedure that can yield initial data in as few as six hours.

Developed by Bennie Martinez and colleagues from the Laboratory's Chemistry Division, the new procedure will be presented at the 2003 American Chemical Society meeting today, at the Javits Convention Center, New York, N.Y.

Utilizing standard chemical analysis the Los Alamos team came up with a unique combination of procedures that extract and identify radionuclides from fused soils and rock, likely the most common constituents in bomb debris. Other ingredients might include concrete and asphalt residues, metal fragments, plastics and glass-anything present in a populated urban setting.

In one possible scenario, the bomb debris would be initially gathered and delivered to a rapidly dispatched mobile laboratory. At the outset of analysis the sample is pulverized into a powder in a micro-mill, the radionuclides are leached and later dissolved in nitric acid.

The separation takes place in the liquid-liquid phase of the procedure using iso-octyl acid phosphate (IOAP) or di-2-ethyl hexyl phosphoric acid (D2EHPA), which is basically a kind of oil and water separation technique where the two chemicals are mixed with the nitric acid solution, along with the bomb debris in a gyrorotary shaker then left motionless.

As the chemicals separate from the nitric acid solution the radionuclide constituents remain with the IOAP or D2EHPA and the rest of the bomb debris remains in the nitric acid solution.

The radionuclides in solution are then stippled-tiny dots of the solution are placed on a platinum disk-and flamed over a Bunsen burner to evaporate out the liquids. The disk is then place in an alpha spectrometer where the radionuclides are finally identified.

"We have achieved a result with fair to good resolution using very few chemicals in a quick turnaround time with a minimum of steps required in the process," said Martinez.

"This procedure appears to be faster and simpler than the standard ion exchange/electrodeposition method. There are shortcomings in this screening methodology as compared to ion exchange, but what we were looking for was fast results that are reasonably accurate and relatively easy to obtain, and we did that."

Initial experiments used "cold" or non-radioactive vitrified, glass-like soils spiked with known quantities of radionuclides and low-level vitrified volcanic tuff containing picocurie levels of radionuclides as stand-ins for the bomb debris. Utilizing both materials, the new screening methodology was able to identify and characterize Plutonium-239, Uranium-238, Americium-241, Curium-244 and Neptunium-237.

"It's clear the method can identify a variety of radionuclides that might be present in dirty bomb debris," said Martinez. "Since the method is fairly simple and uses a minimum of equipment, we believe it could be forward deployed and could provide early data to law enforcement and others following a terrorist event. We want to help officials close in on the culprits as fast as possible."

Related Links
Los Alamos National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Airborne Sensor Technology Assists Emergency Responders
Los Alamos - Aug 28, 2003
Scientists at Los Alamos National Laboratory and emergency first-responders from the U.S. Environmental Protection Agency have developed airborne infrared sensor technology that can aid emergency crews by detecting and mapping hazardous and toxic chemical plumes unleashed by disaster or terrorist acts.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.